User:George G. Papadeas/Sandbox VKOR

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 21: Line 21:
== Function: Method of Coagulation ==
== Function: Method of Coagulation ==
=== Brief Overview ===
=== Brief Overview ===
-
In its resting state, VKOR is in an <scene name='90/906893/Open_conformation/1'>open conformation</scene>, prepared for a substrate to bind. Once the substrate binds, this will induce the closed conformation of VKOR, where the catalytic mechanism will activate Vitamin K via reactive cysteine residues. Vitamin K will then be released from the binding pocket for use in the body, and VKOR will return to the open conformation once again. The enzyme will then reset into its reactive state to prep for another molecule of Vitamin K to bind.
+
The overall mechanism works to convert Vitamin K epoxide to an activated form of Vitamin K hydroquinone, as noted in Figure 1. The substrate will bind VKOR at the binding pocket in the <scene name='90/906893/Open_conformation/1'>open conformation</scene> and induce the <scene name='90/906893/Closed_conformation/4'>closed conformation</scene>. Transition from open to closed conformation occurs with the oxidation of the C43-C51 disulfide bridge. Here, VKOR will utilize the second pair of catalytic cysteines, C132 and C135, to reduce KO into Vitamin K and Vitamin K into KH2. KH2 will be released from the binding fully activated and ready for use in the body. VKOR will reset, returning to the open conformation again, prepared for another substrate to bind.
=== Catalytic Mechanism ===
=== Catalytic Mechanism ===

Revision as of 22:37, 16 April 2022

VKOR

VKOR with KO bound.

Drag the structure with the mouse to rotate


References

1. DJin, Da-Yun, Tie, Jian-Ke, and Stafford, Darrel W. "The Conversion of Vitamin K Epoxide to Vitamin K Quinone and Vitamin K Quinone to Vitamin K Hydroquinone Uses the Same Active Site Cysteines." Biochemistry 2007 46 (24), 7279-7283 [1].

2. Li, Weikai et al. “Structure of a bacterial homologue of vitamin K epoxide reductase.” Nature vol. 463,7280 (2010): 507-12. doi:10.1038/nature08720.

3. Liu S, Li S, Shen G, Sukumar N, Krezel AM, Li W. Structural basis of antagonizing the vitamin K catalytic cycle for anticoagulation. Science. 2021 Jan 1;371(6524):eabc5667. doi: 10.1126/science.abc5667. Epub 2020 Nov 5. PMID: 33154105; PMCID: PMC7946407.


  1. Hanson, R. M., Prilusky, J., Renjian, Z., Nakane, T. and Sussman, J. L. (2013), JSmol and the Next-Generation Web-Based Representation of 3D Molecular Structure as Applied to Proteopedia. Isr. J. Chem., 53:207-216. doi:http://dx.doi.org/10.1002/ijch.201300024
  2. Herraez A. Biomolecules in the computer: Jmol to the rescue. Biochem Mol Biol Educ. 2006 Jul;34(4):255-61. doi: 10.1002/bmb.2006.494034042644. PMID:21638687 doi:10.1002/bmb.2006.494034042644
  3. Unknown PubmedID 10.1126
  4. Unknown PubmedID 10.1021
  5. Unknown PubmedID 10.1126

Proteopedia Page Contributors and Editors (what is this?)

George G. Papadeas

Personal tools