Enolase

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 9: Line 9:
==Mechanism==
==Mechanism==
-
[[Image:mechanism.png|left|400px|The mechanism of 2PG to PEP using enolase.]]<ref>{{website2}}</ref>
+
 
The <scene name='Cory_Tiedeman_Sandbox_1/Active_site/1'>active site</scene> of enolase as shown, involves Lys 345, Lys 396, Glu 168, Glu 211, and His 159. Enolase forms a complex with two
The <scene name='Cory_Tiedeman_Sandbox_1/Active_site/1'>active site</scene> of enolase as shown, involves Lys 345, Lys 396, Glu 168, Glu 211, and His 159. Enolase forms a complex with two
<scene name='Cory_Tiedeman_Sandbox_1/Mg/3'>Mg 2+'s</scene> at its active site.
<scene name='Cory_Tiedeman_Sandbox_1/Mg/3'>Mg 2+'s</scene> at its active site.

Revision as of 09:41, 11 September 2022

Yeast enolase dimer complex with phosphoenolpyruvate and phosphoglycerate, 1one

Drag the structure with the mouse to rotate

Additional Resources

For additional information, see: Carbohydrate Metabolism

References

  1. Voet, Donald, Judith G. Voet, and Charlotte W. Pratt. Fundamentals of Biochemistry: Life at the Molecular Level. 3rd ed. Hoboken, NJ: John Wiley & Sons, Inc., 2008.
  2. Voet, Donald, Judith G. Voet, and Charlotte W. Pratt. Fundamentals of Biochemistry: Life at the Molecular Level. 3rd ed. Hoboken, NJ: John Wiley & Sons, Inc., 2008.
  3. Pancholi, V. "Multifunctional a-Enolase: Its Role in Diseases." CMLS, Cellular and Molecular Life Sciences 58 (2001): 902-20.
  4. The scop authors. Structural Classification of Proteins. “Protein: Enolase from Baker's yeast (Saccharomyces cerevisiae). 2009. 2/26 2010. [<http://scop.mrc-lmb.cam.ac.uk/scop/data/scop.b.d.b.bc.b.b.html>.]
  5. The scop authors. Structural Classification of Proteins. “Protein: Enolase from Baker's yeast (Saccharomyces cerevisiae). 2009. 2/26 2010. [<http://scop.mrc-lmb.cam.ac.uk/scop/data/scop.b.d.b.bc.b.b.html>.]
  6. Voet, Donald, Judith G. Voet, and Charlotte W. Pratt. Fundamentals of Biochemistry: Life at the Molecular Level. 3rd ed. Hoboken, NJ: John Wiley & Sons, Inc., 2008.
  7. Westhead, E. W., and BO G. Malmstrom. "The Chemical Kinetics of the Enolase Reaction with Special References to the Use of Mixed Solvents." The Journal of Biological Chemistry 228 (1957): 655-71.
  8. Westhead, E. W., and BO G. Malmstrom. "The Chemical Kinetics of the Enolase Reaction with Special References to the Use of Mixed Solvents." The Journal of Biological Chemistry 228 (1957): 655-71.
  9. Pancholi, V. "Multifunctional a-Enolase: Its Role in Diseases." CMLS, Cellular and Molecular Life Sciences 58 (2001): 902-20.
Personal tools