Mitochondrial hotdog-fold thioesterase

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 8: Line 8:
----
----
-
==Your Heading Here (maybe something like 'Structure')==
 
<StructureSection load='4gah' size='340' side='right' caption='Human Them4 (PDB entry [[4gah]])' scene=''>
<StructureSection load='4gah' size='340' side='right' caption='Human Them4 (PDB entry [[4gah]])' scene=''>

Revision as of 12:31, 28 May 2024

Overview of thioesterases

Thioesterases are enzymes that catalyze the hydrolysis of thioester bonds, which are the linkage between a carbonyl and a sulfur atom. The ATP-dependent formation of a thioester bond from a carboxylate and a thiol in biomolecules makes them more reactive and is particularly an important commitment step in lipid metabolism. Therefore, thioesterases counteract this activation by releasing upon hydrolysis a molecule with the more stable carboxylate group. For this reason, thioesterases are found at the end of some metabolic pathways but they also may act as regulators of flux. Besides lipid metabolism, thioester bonds also occur in biosynthetic pathways for polyketide and non-ribosomal peptide production, as well as in main metabolites of carbon metabolism such as acetyl-CoA and succinyl-CoA.

There are two main families of thioesterases which are distinguished by their folding, named the α/β-hydrolases and the hotdog-fold hydrolases. Notably, these two different families are evolutionarily distant, so the thioesterase activity is a shared feature owing to convergent evolution.


Human Them4 (PDB entry 4gah)

Drag the structure with the mouse to rotate

References

Swarbrick, C. M., Nanson, J. D., Patterson, E. I., & Forwood, J. K. (2020). Structure, function, and regulation of thioesterases. Progress in Lipid Research, 79, 101036. https://doi.org/10.1016/j.plipres.2020.101036

Caswell, B. T., de Carvalho, C. C., Nguyen, H., Roy, M., Nguyen, T., & Cantu, D. C. (2022). Thioesterase enzyme families: Functions, structures, and mechanisms. Protein Science, 31(3), 652-676. https://doi.org/10.1002/pro.4263

Zhao, H., Martin, B. M., Bisoffi, M., & Dunaway-Mariano, D. (2009). The Akt C-terminal modulator protein is an acyl-CoA thioesterase of the Hotdog-Fold family. Biochemistry, 48(24), 5507-5509. https://doi.org/10.1021/bi900710w

Zhao, H., Lim, K., Choudry, A., Latham, J. A., Pathak, M. C., Dominguez, D., ... & Dunaway-Mariano, D. (2012). Correlation of structure and function in the human hotdog-fold enzyme hTHEM4. Biochemistry, 51(33), 6490-6492. https://doi.org/10.1021/bi300968n

Zhuravleva, E., Gut, H., Hynx, D., Marcellin, D., Bleck, C. K., Genoud, C., ... & Hemmings, B. A. (2012). Acyl coenzyme A thioesterase Them5/Acot15 is involved in cardiolipin remodeling and fatty liver development. Molecular and cellular biology, 32(14), 2685-2697. https://doi.org/10.1128/MCB.00312-12

Proteopedia Page Contributors and Editors (what is this?)

Marcelo Mesa, Thabata Fernanda Oliveira, Eduardo Ferraro, Michal Harel

Personal tools