Sandbox Home

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 24: Line 24:
</tr>
</tr>
-
<!-- SINGLE CONTENT ROW WITH ALL THREE COLUMNS -->
+
<!-- SINGLE CONTENT ROW -->
-
<tr style="vertical-align:top; text-align:center;">
+
<tr>
-
<!-- LEFT COLUMN: LINKS FIRST, THEN FEATURED -->
+
<!-- LEFT COLUMN -->
-
<td style="padding:10px;">
+
<td style="padding:10px; vertical-align:top !important;">
-
<!-- Links (always at the top) -->
+
<!-- Links first (will sit at top) -->
<div>
<div>
<p>[[Help:Contents#For_authors:_contributing_content|How to add content to Proteopedia]]</p>
<p>[[Help:Contents#For_authors:_contributing_content|How to add content to Proteopedia]]</p>
Line 35: Line 35:
</div>
</div>
-
<!-- Featured block below the links -->
+
<!-- Featured underneath -->
<div style="margin-top:10px;">
<div style="margin-top:10px;">
{{Proteopedia:Featured SEL/{{#expr: {{#time:U}} mod {{Proteopedia:Number of SEL articles}}}}}}
{{Proteopedia:Featured SEL/{{#expr: {{#time:U}} mod {{Proteopedia:Number of SEL articles}}}}}}
Line 42: Line 42:
<!-- MIDDLE COLUMN -->
<!-- MIDDLE COLUMN -->
-
<td style="padding:10px;">
+
<td style="padding:10px; vertical-align:top !important;">
<div>
<div>
<p>[[I3DC|About Interactive 3D Complements - '''I3DCs''']]</p>
<p>[[I3DC|About Interactive 3D Complements - '''I3DCs''']]</p>
Line 48: Line 48:
<p>[[How to get an I3DC for your paper]]</p>
<p>[[How to get an I3DC for your paper]]</p>
</div>
</div>
- 
<div style="margin-top:10px;">
<div style="margin-top:10px;">
{{Proteopedia:Featured JRN/{{#expr: {{#time:U}} mod {{Proteopedia:Number of JRN articles}}}}}}
{{Proteopedia:Featured JRN/{{#expr: {{#time:U}} mod {{Proteopedia:Number of JRN articles}}}}}}
Line 55: Line 54:
<!-- RIGHT COLUMN -->
<!-- RIGHT COLUMN -->
-
<td style="padding:10px;">
+
<td style="padding:10px; vertical-align:top !important;">
<div>
<div>
<p>[[Teaching strategies using Proteopedia]]</p>
<p>[[Teaching strategies using Proteopedia]]</p>
Line 61: Line 60:
<p>[[Help:Contents#For_authors:_contributing_content|How to add content to Proteopedia]]</p>
<p>[[Help:Contents#For_authors:_contributing_content|How to add content to Proteopedia]]</p>
</div>
</div>
- 
<div style="margin-top:10px;">
<div style="margin-top:10px;">
{{Proteopedia:Featured EDU/{{#expr: {{#time:U}} mod {{Proteopedia:Number of EDU articles}}}}}}
{{Proteopedia:Featured EDU/{{#expr: {{#time:U}} mod {{Proteopedia:Number of EDU articles}}}}}}

Revision as of 16:00, 30 September 2025

ISSN 2310-6301
     
       As life is more than 2D, Proteopedia helps to bridge the gap between 3D structure & function of biomacromolecules
     
     
       Proteopedia presents this information in a user-friendly way as a collaborative & free 3D-encyclopedia of proteins & other biomolecules.
     
Selected Research Pages In Journals Education
About this image
HIV-1 protease

by David Canner
The X-ray structure of HIV-1 protease reveals that it is composed of two symmetrically related subunits which form a tunnel where they meet. This is critical because it contains the active site of the protease, consisting on two Asp-Thr-Gly conserved sequences, making it a member of the aspartyl protease family. The two catalytic Asp's either interact with the incoming water or protonate the carbonyl to make the carbon more electrophilic for the incoming water.

>>> Visit this page >>>

About this image
Interconversion of the specificities of human lysosomal enzymes associated with Fabry and Schindler diseases.

IB Tomasic, MC Metcalf, AI Guce, NE Clark, SC Garman. J. Biol. Chem. 2010 doi: 10.1074/jbc.M110.118588
The human lysosomal enzymes α-galactosidase and α-N-acetylgalactosaminidase share 46% amino acid sequence identity and have similar folds. Using a rational protein engineering approach, we interconverted the enzymatic specificity of α-GAL and α-NAGAL. The engineered α-GAL retains the antigenicity but has acquired the enzymatic specificity of α-NAGAL. Conversely, the engineered α-NAGAL retains the antigenicity but has acquired the enzymatic specificity of the α-GAL enzyme. Comparison of the crystal structures of the designed enzyme to the wild-type enzymes shows that active sites superimpose well, indicating success of the rational design. The designed enzymes might be useful as non-immunogenic alternatives in enzyme replacement therapy for treatment of lysosomal storage disorders such as Fabry disease.

>>> Visit this I3DC complement >>>

About this image
Introduction to protein structure

This tutorial illustrates some basic properties of protein structure:

  • Levels of protein structure.
  • Ways of representing protein structure.
  • Secondary structures.
  • Motifs in proteins.
  • Domains.
  • Tertiary structure.
  • Quaternary structure.

>>> Visit this page >>>

About Contact Hot News Table of Contents Structure Index Help
Personal tools