We apologize for Proteopedia being slow to respond. For the past two years, a new implementation of Proteopedia has been being built. Soon, it will replace this 18-year old system. All existing content will be moved to the new system at a date that will be announced here.

LiLac - a biosensor for Lactate

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 2: Line 2:
<StructureSection load='9ebx' size='340' side='right' caption='Caption for this structure' scene=''>
<StructureSection load='9ebx' size='340' side='right' caption='Caption for this structure' scene=''>
-
LiLac is a biosensor for lactate with a fluorescence-lifetime readout [1]. The fluorescent protein in LiLac is mTurquoise, a low pKa fluorescent protein commonly used in lifetime-contrast sensors. The ligand-binding protein in LiLac is the lactate-binding Cache domain of TlpC. Cache-domain-containing proteins sense extracellular nutrients to guide chemotaxis in bacteria; the N- and C- termini of the nutrient-sensing regions in Cache proteins (like the lactate-binding region of TlpC) are close in space, facilitating modular design. The combination of this modularity and the large diversity of ligands that Cache domains can sense have made this domain family an attractive starting point for building sensors. The mTurquoise is split in the middle of its seventh β-strand (β7) and then inserted the extracellular domain of TlpC at this position [2]. By engineering the connections between split mTurquoise and TlpC using a microfluidics-based screen, we developed LiLac, a lactate biosensor with a robust ~1.2 ns decrease (−35%) in fluorescence lifetime as lactate binds.
+
LiLac is a biosensor for lactate with a fluorescence-lifetime readout <ref>DOI 10.1038/s41467-022-30685-x</ref>. The fluorescent protein in LiLac is mTurquoise, a low pKa fluorescent protein commonly used in lifetime-contrast sensors. The ligand-binding protein in LiLac is the lactate-binding Cache domain of TlpC. Cache-domain-containing proteins sense extracellular nutrients to guide chemotaxis in bacteria; the N- and C- termini of the nutrient-sensing regions in Cache proteins (like the lactate-binding region of TlpC) are close in space, facilitating modular design. The combination of this modularity and the large diversity of ligands that Cache domains can sense have made this domain family an attractive starting point for building sensors. The mTurquoise is split in the middle of its seventh β-strand (β7) and then inserted the extracellular domain of TlpC at this position [2]. By engineering the connections between split mTurquoise and TlpC using a microfluidics-based screen, we developed LiLac, a lactate biosensor with a robust ~1.2 ns decrease (−35%) in fluorescence lifetime as lactate binds.
-
You may include any references to papers as in: the use of JSmol in Proteopedia <ref>DOI 10.1002/ijch.201300024</ref> or to the article describing Jmol <ref>PMID:21638687</ref> to the rescue.
+
 
 +
 
 +
You may include any references to papers as in: the use of JSmol in Proteopedia or to the article describing Jmol <ref>PMID:21638687</ref> to the rescue.
== Function ==
== Function ==

Revision as of 17:30, 29 November 2025

INTRODUCTION TO A LACTATE SENSOR

Caption for this structure

Drag the structure with the mouse to rotate

References

  1. doi: https://dx.doi.org/10.1038/s41467-022-30685-x
  2. Herraez A. Biomolecules in the computer: Jmol to the rescue. Biochem Mol Biol Educ. 2006 Jul;34(4):255-61. doi: 10.1002/bmb.2006.494034042644. PMID:21638687 doi:10.1002/bmb.2006.494034042644

Proteopedia Page Contributors and Editors (what is this?)

Dhritiraj Bastav Kalita

Personal tools