Enolase

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 1: Line 1:
-
<StructureSection load='1one' size='450' side='right' caption='Yeast enolase dimer complex with phosphoenolpyruvate and phosphoglycerate, [[1one]]' scene='Enolase/Enolase/1'><scene name='Cory_Tiedeman_Sandbox_1/Enolase/1'>Enolase</scene> is an enzyme that catalyzes a reaction of glycolysis. [[Glycolysis]] converts glucose into two 3-carbon molecules called pyruvate. The energy released during glycolysis is used to make ATP.<ref>{{textbook |author=Voet, Donald; Voet, Judith C.; Pratt, Charlotte W.|title=Fundamentals of Biochemistry: Life at the Molecular Level|edition= 3|pages=487|}}</ref> Enolase is used to convert 2-phosphoglycerate (2PG) to phosphoenolpyruvate (PEP) in the 9th reaction of glycolysis: it is a reversible dehydration reaction.<ref>{{textbook |author=Voet, Donald; Voet, Judith C.; Pratt, Charlotte W.|title=Fundamentals of Biochemistry: Life at the Molecular Level|edition= 3|pages=500|}}</ref>. Enolase is expressed abundantly in most cells and has been proven useful as a model to study mechanisms of enzyme action and structural analysis <ref>{{journal}}</ref>. As with the reaction below, Enolase must have a divalent metal cation present to activate or deactivate the enzyme. The best cofactor would be Mg2+, but many, including Zn2+, Mn2+ and Co2+ can be used. The metal ion works by binding to the enzyme at the active site and producing a conformational change. This makes it possible for the substrate (2-PGA) to bind at the Enolase active site. Once this happens, a second metal ion comes in and binds to the enzyme to activate the Enolase catalytic ability.
+
<StructureSection load='1one' size='450' side='right' caption='Yeast enolase dimer complex with phosphoenolpyruvate and phosphoglycerate, [[1one]]' scene='Enolase/Enolase/1'><scene name='Cory_Tiedeman_Sandbox_1/Enolase/1'>Enolase</scene> is an enzyme that catalyzes a reaction of glycolysis. [[Glycolysis]] converts glucose into two 3-carbon molecules called pyruvate. The energy released during glycolysis is used to make ATP.<ref>{{textbook |author=Voet, Donald; Voet, Judith C.; Pratt, Charlotte W.|title=Fundamentals of Biochemistry: Life at the Molecular Level|edition= 3|pages=487|}}</ref> Enolase is used to convert 2-phosphoglycerate (2PG) to phosphoenolpyruvate (PEP) in the 9th reaction of glycolysis: it is a reversible dehydration reaction.<ref>{{textbook |author=Voet, Donald; Voet, Judith C.; Pratt, Charlotte W.|title=Fundamentals of Biochemistry: Life at the Molecular Level|edition= 3|pages=500|}}</ref>. Enolase is expressed abundantly in most cells and has been proven useful as a model to study mechanisms of enzyme action and structural analysis <ref>{{journal}}</ref>. As with the reaction below, Enolase must have a divalent metal cation present to activate or deactivate the enzyme. The best cofactor would be Mg2+, but many, including Zn2+, Mn2+ and Co2+ can be used. The metal ion works by binding to the enzyme at the active site and producing a conformational change. This makes it possible for the substrate (2-PGA) to bind at the Enolase active site. Once this happens, a second metal ion comes in and binds to the enzyme to activate the Enolase catalytic ability. For sequence alignment see [[Enolase multiple sequence alignment]].
{{TOC limit|2}}
{{TOC limit|2}}

Revision as of 12:41, 18 March 2013

Yeast enolase dimer complex with phosphoenolpyruvate and phosphoglycerate, 1one

Drag the structure with the mouse to rotate

References

  1. Voet, Donald, Judith G. Voet, and Charlotte W. Pratt. Fundamentals of Biochemistry: Life at the Molecular Level. 3rd ed. Hoboken, NJ: John Wiley & Sons, Inc., 2008.
  2. Voet, Donald, Judith G. Voet, and Charlotte W. Pratt. Fundamentals of Biochemistry: Life at the Molecular Level. 3rd ed. Hoboken, NJ: John Wiley & Sons, Inc., 2008.
  3. Pancholi, V. "Multifunctional a-Enolase: Its Role in Diseases." CMLS, Cellular and Molecular Life Sciences 58 (2001): 902-20.
  4. The scop authors. Structural Classification of Proteins. “Protein: Enolase from Baker's yeast (Saccharomyces cerevisiae). 2009. 2/26 2010. [<http://scop.mrc-lmb.cam.ac.uk/scop/data/scop.b.d.b.bc.b.b.html>.]
  5. The scop authors. Structural Classification of Proteins. “Protein: Enolase from Baker's yeast (Saccharomyces cerevisiae). 2009. 2/26 2010. [<http://scop.mrc-lmb.cam.ac.uk/scop/data/scop.b.d.b.bc.b.b.html>.]
  6. Nguyen, Tram, and Katelyn Thompson. "Mechanism of Enolase Converting 2-Phosphoglycerate to Phosphoenolpyruvate." ChemDraw 10.0: Public Domain, 2008. [1].
  7. Voet, Donald, Judith G. Voet, and Charlotte W. Pratt. Fundamentals of Biochemistry: Life at the Molecular Level. 3rd ed. Hoboken, NJ: John Wiley & Sons, Inc., 2008.
  8. Westhead, E. W., and BO G. Malmstrom. "The Chemical Kinetics of the Enolase Reaction with Special References to the Use of Mixed Solvents." The Journal of Biological Chemistry 228 (1957): 655-71.
  9. Westhead, E. W., and BO G. Malmstrom. "The Chemical Kinetics of the Enolase Reaction with Special References to the Use of Mixed Solvents." The Journal of Biological Chemistry 228 (1957): 655-71.
  10. Pancholi, V. "Multifunctional a-Enolase: Its Role in Diseases." CMLS, Cellular and Molecular Life Sciences 58 (2001): 902-20.
Personal tools