Sandbox Reserved 994

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 26: Line 26:
The mechanism of attack involves a catalytic serine residue, a carboxylated lysine, and another active site serine which contributes to proton movement (A). A high energy tetrahedral intermediate (B) is generated and an acyl enzyme intermediate (C) is formed after the cleavage of the four-membered ring. KCX84 activates the deacylating water which completes the reaction leaving a hydrolyzed β-lactam ring and a regenerated β-lactamase (Powers paper 2013).
The mechanism of attack involves a catalytic serine residue, a carboxylated lysine, and another active site serine which contributes to proton movement (A). A high energy tetrahedral intermediate (B) is generated and an acyl enzyme intermediate (C) is formed after the cleavage of the four-membered ring. KCX84 activates the deacylating water which completes the reaction leaving a hydrolyzed β-lactam ring and a regenerated β-lactamase (Powers paper 2013).
-
<scene name='69/691536/Closeupdrug/1'>close up</scene>
+
<scene name='69/691536/Closeupdrug/1'>close up</scene><ref>PMID: 10817708</ref>
== Inhibition ==
== Inhibition ==

Revision as of 20:52, 20 February 2015

This Sandbox is Reserved from 20/01/2015, through 30/04/2016 for use in the course "CHM 463" taught by Mary Karpen at the Grand Valley State University. This reservation includes Sandbox Reserved 987 through Sandbox Reserved 996.
To get started:
  • Click the edit this page tab at the top. Save the page after each step, then edit it again.
  • Click the 3D button (when editing, above the wikitext box) to insert Jmol.
  • show the Scene authoring tools, create a molecular scene, and save it. Copy the green link into the page.
  • Add a description of your scene. Use the buttons above the wikitext box for bold, italics, links, headlines, etc.

More help: Help:Editing

OXA-24 β-lactamase

Caption for this structure

Drag the structure with the mouse to rotate

References

  1. Hanson, R. M., Prilusky, J., Renjian, Z., Nakane, T. and Sussman, J. L. (2013), JSmol and the Next-Generation Web-Based Representation of 3D Molecular Structure as Applied to Proteopedia. Isr. J. Chem., 53:207-216. doi:http://dx.doi.org/10.1002/ijch.201300024
  2. Herraez A. Biomolecules in the computer: Jmol to the rescue. Biochem Mol Biol Educ. 2006 Jul;34(4):255-61. doi: 10.1002/bmb.2006.494034042644. PMID:21638687 doi:10.1002/bmb.2006.494034042644
  3. PMCID:PMC162717
  4. Bou G, Oliver A, Martinez-Beltran J. OXA-24, a novel class D beta-lactamase with carbapenemase activity in an Acinetobacter baumannii clinical strain. Antimicrob Agents Chemother. 2000 Jun;44(6):1556-61. PMID:10817708
Personal tools