Sandbox Reserved 994
From Proteopedia
(Difference between revisions)
| Line 22: | Line 22: | ||
[[Image:B-lactam hydrolysis3.png|500px|left|thumb|alt=text|β-lactam antibiotics (basic structure of a β-lactam is shown above) are hydrolyzed by β-lactamase enzymes, utilizing a covalent catalysis serine-based mechanism. The β-lactamase cleaves the amide bond of the four membered ring which renders the antibiotic inactive before it reaches its bacterial target, the transpeptidase enzymes.]] | [[Image:B-lactam hydrolysis3.png|500px|left|thumb|alt=text|β-lactam antibiotics (basic structure of a β-lactam is shown above) are hydrolyzed by β-lactamase enzymes, utilizing a covalent catalysis serine-based mechanism. The β-lactamase cleaves the amide bond of the four membered ring which renders the antibiotic inactive before it reaches its bacterial target, the transpeptidase enzymes.]] | ||
| - | [[Image:Beta-lactamase resized mechanism.png| | + | [[Image:Beta-lactamase resized mechanism.png|700px|left|thumb|alt=text|The mechanism of attack involves a catalytic serine residue, a carboxylated lysine, and another active site serine which contributes to proton movement (A). A high energy tetrahedral intermediate (B) is generated and an acyl enzyme intermediate (C) is formed after the cleavage of the four-membered ring. KCX84 activates the deacylating water which completes the reaction leaving a hydrolyzed β-lactam ring and a regenerated β-lactamase.<ref>DOI: 10.1021/ar300327a</ref>]] |
| - | + | ||
| - | + | ||
<scene name='69/691536/Closeupdrug/1'>close up</scene><ref>PMID: 10817708</ref> | <scene name='69/691536/Closeupdrug/1'>close up</scene><ref>PMID: 10817708</ref> | ||
Revision as of 20:51, 21 February 2015
| This Sandbox is Reserved from 20/01/2015, through 30/04/2016 for use in the course "CHM 463" taught by Mary Karpen at the Grand Valley State University. This reservation includes Sandbox Reserved 987 through Sandbox Reserved 996. |
To get started:
More help: Help:Editing |
OXA-24 β-lactamase
| |||||||||||
References
- ↑ Hanson, R. M., Prilusky, J., Renjian, Z., Nakane, T. and Sussman, J. L. (2013), JSmol and the Next-Generation Web-Based Representation of 3D Molecular Structure as Applied to Proteopedia. Isr. J. Chem., 53:207-216. doi:http://dx.doi.org/10.1002/ijch.201300024
- ↑ Herraez A. Biomolecules in the computer: Jmol to the rescue. Biochem Mol Biol Educ. 2006 Jul;34(4):255-61. doi: 10.1002/bmb.2006.494034042644. PMID:21638687 doi:10.1002/bmb.2006.494034042644
- ↑ Leonard DA, Bonomo RA, Powers RA. Class D beta-lactamases: a reappraisal after five decades. Acc Chem Res. 2013 Nov 19;46(11):2407-15. doi: 10.1021/ar300327a. Epub 2013 Jul, 31. PMID:23902256 doi:http://dx.doi.org/10.1021/ar300327a
- ↑ doi: https://dx.doi.org/10.3390/antibiotics3020128#sthash.iyPihLj1.dpuf
- ↑ PMCID: PMC162717
- ↑ Patrick, G. (2005). Antibacterial Agents. An Introduction to Medicinal Chemistry (3rd Ed), pages 388-414.
- ↑ Neu, Harold. "The Crisis in Antibiotic Resistance." Science (1992) 257, 5073. ProQuest Medical Library: p. 1064-1072.
- ↑ Bush K, Jacoby GA. Updated functional classification of beta-lactamases. Antimicrob Agents Chemother. 2010 Mar;54(3):969-76. doi: 10.1128/AAC.01009-09., Epub 2009 Dec 7. PMID:19995920 doi:http://dx.doi.org/10.1128/AAC.01009-09
- ↑ Leonard DA, Bonomo RA, Powers RA. Class D beta-lactamases: a reappraisal after five decades. Acc Chem Res. 2013 Nov 19;46(11):2407-15. doi: 10.1021/ar300327a. Epub 2013 Jul, 31. PMID:23902256 doi:http://dx.doi.org/10.1021/ar300327a
- ↑ Bou G, Oliver A, Martinez-Beltran J. OXA-24, a novel class D beta-lactamase with carbapenemase activity in an Acinetobacter baumannii clinical strain. Antimicrob Agents Chemother. 2000 Jun;44(6):1556-61. PMID:10817708

