Sandbox Reserved 991
From Proteopedia
Line 7: | Line 7: | ||
[http://en.wikipedia.org/wiki/Lanosterol_synthase Lanosterol synthase] is an important enzyme in the cholesterol biosynthesis pathway, it converts [http://en.wikipedia.org/wiki/2,3-Oxidosqualene 2,3-Oxidosqualene] to [http://en.wikipedia.org/wiki/Lanosterol Lanosterol]. | [http://en.wikipedia.org/wiki/Lanosterol_synthase Lanosterol synthase] is an important enzyme in the cholesterol biosynthesis pathway, it converts [http://en.wikipedia.org/wiki/2,3-Oxidosqualene 2,3-Oxidosqualene] to [http://en.wikipedia.org/wiki/Lanosterol Lanosterol]. | ||
+ | |||
+ | [[Image:Lanosterol synthase.jpg | thumb]] | ||
== Structure == | == Structure == | ||
Line 16: | Line 18: | ||
The enzyme oxidosqualene cyclase carries out the most complex phase of cholesterol synthesis. It takes a lengthy skinny carbon chain, oxidosqualene, and folds it to create a cyclic compound composed of four connected rings. | The enzyme oxidosqualene cyclase carries out the most complex phase of cholesterol synthesis. It takes a lengthy skinny carbon chain, oxidosqualene, and folds it to create a cyclic compound composed of four connected rings. | ||
<scene name='69/691533/Lanosterol/1'>Lanosterol</scene> | <scene name='69/691533/Lanosterol/1'>Lanosterol</scene> | ||
- | |||
=== Cholesterol Biosynthesis === | === Cholesterol Biosynthesis === |
Revision as of 00:16, 24 February 2015
This Sandbox is Reserved from 20/01/2015, through 30/04/2016 for use in the course "CHM 463" taught by Mary Karpen at the Grand Valley State University. This reservation includes Sandbox Reserved 987 through Sandbox Reserved 996. |
To get started:
More help: Help:Editing |
|
This is a default text for your page '. Click above on edit this page' to modify. Be careful with the < and > signs. You may include any references to papers as in: the use of JSmol in Proteopedia [1] or to the article describing Jmol [2] to the rescue.
Contents |
Introduction
Lanosterol synthase is an important enzyme in the cholesterol biosynthesis pathway, it converts 2,3-Oxidosqualene to Lanosterol.
Structure
These are the for this protein. The first step is to open the epoxide ring on 2,3-oxidosqualene by protonation. The proton donor is the aspartic acid residue D455. Conversely, in the second step of the reaction, a proton is removed from C9 and is accepted by the histidine residue H232.
Function
The enzyme oxidosqualene cyclase carries out the most complex phase of cholesterol synthesis. It takes a lengthy skinny carbon chain, oxidosqualene, and folds it to create a cyclic compound composed of four connected rings.
Cholesterol Biosynthesis
Disease
Relevance
Structural highlights
This is a sample scene created with SAT to by Group, and another to make of the protein. You can make your own scenes on SAT starting from scratch or loading and editing one of these sample scenes.
References
- ↑ Hanson, R. M., Prilusky, J., Renjian, Z., Nakane, T. and Sussman, J. L. (2013), JSmol and the Next-Generation Web-Based Representation of 3D Molecular Structure as Applied to Proteopedia. Isr. J. Chem., 53:207-216. doi:http://dx.doi.org/10.1002/ijch.201300024
- ↑ Herraez A. Biomolecules in the computer: Jmol to the rescue. Biochem Mol Biol Educ. 2006 Jul;34(4):255-61. doi: 10.1002/bmb.2006.494034042644. PMID:21638687 doi:10.1002/bmb.2006.494034042644