Sandbox Reserved 1120

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 74: Line 74:
It is approximately 80 residues long. It mediates the binding of the protein to the minor groove of DNA. It is the most important part of the SRY protein. Not only because it enable the protein to bind the DNA but because even a little mutation can cause an inactivation of the protein.
It is approximately 80 residues long. It mediates the binding of the protein to the minor groove of DNA. It is the most important part of the SRY protein. Not only because it enable the protein to bind the DNA but because even a little mutation can cause an inactivation of the protein.
-
It has a Twisted L shape meaning that it has a long (28Å) and a short (22Å) arm. The HMG Box is made of 3 helices, its N-term and C-term are irregular. The overall Structure is stabilized by a hydrophobic core.
+
It has a Twisted L shape meaning that it has a long (28Å) and a short (22Å) arm. The HMG Box is made of 3 helices, its N-term and C-term are irregular. The overall structure is stabilized by a hydrophobic core especially at the intersection of the 3 helices where 3 aromatics cycles meet, surrounnded by aliphatic aminoacids.
The interaction between the HMG-Box and DNA is specific and stable. It permits the bend of DNA (?75°). It is mostly hydrophobic interaction. Only one molecule of water interface the Box and the DNA. the complex is stabilized by salt bridges between positive charged residues of the HMG domain and negative charged phosphates.<ref>PMID: 9626701</ref>
The interaction between the HMG-Box and DNA is specific and stable. It permits the bend of DNA (?75°). It is mostly hydrophobic interaction. Only one molecule of water interface the Box and the DNA. the complex is stabilized by salt bridges between positive charged residues of the HMG domain and negative charged phosphates.<ref>PMID: 9626701</ref>
-
[[https://commons.wikimedia.org/wiki/File:HHMG_-_linear.svg]]
+
[[https://commons.wikimedia.org/wiki/File:HHMG_-_linear.svg Linear structure of hHMG-SRY]]
 +
[[Image:HHMG - linear.svg]]
 +
[[Media:HHMG - linear.svg]]
The binding of SRY to DNA is specific. The DNA target site is a DNA octamer :
The binding of SRY to DNA is specific. The DNA target site is a DNA octamer :

Revision as of 22:58, 27 January 2016

This Sandbox is Reserved from 15/12/2015, through 15/06/2016 for use in the course "Structural Biology" taught by Bruno Kieffer at the University of Strasbourg, ESBS. This reservation includes Sandbox Reserved 1120 through Sandbox Reserved 1159.
To get started:
  • Click the edit this page tab at the top. Save the page after each step, then edit it again.
  • Click the 3D button (when editing, above the wikitext box) to insert Jmol.
  • show the Scene authoring tools, create a molecular scene, and save it. Copy the green link into the page.
  • Add a description of your scene. Use the buttons above the wikitext box for bold, italics, links, headlines, etc.

More help: Help:Editing

SRY protein (AKA TDF protein)

The SRY protein linked to DNA

Drag the structure with the mouse to rotate

References

Genetic Home reference

  1. Tang Y, Nilsson L. Interaction of human SRY protein with DNA: a molecular dynamics study. Proteins. 1998 Jun 1;31(4):417-33. PMID:9626701
  2. Sumner, A. T. Sex Chromosomes and Sex Determination. Chromosomes: Organization and Function, 97-108. [1]
  3. Bridges CB. TRIPLOID INTERSEXES IN DROSOPHILA MELANOGASTER. Science. 1921 Sep 16;54(1394):252-4. PMID:17769897 doi:http://dx.doi.org/10.1126/science.54.1394.252
  4. Goodfellow PN, Darling SM. Genetics of sex determination in man and mouse. Development. 1988 Feb;102(2):251-8. PMID:3046910
  5. Jost A. Becoming a male. Adv Biosci. 1973;10:3-13. PMID:4805859
  6. Goodfellow PN, Darling SM. Genetics of sex determination in man and mouse. Development. 1988 Feb;102(2):251-8. PMID:3046910
  7. Gubbay J, Collignon J, Koopman P, Capel B, Economou A, Munsterberg A, Vivian N, Goodfellow P, Lovell-Badge R. A gene mapping to the sex-determining region of the mouse Y chromosome is a member of a novel family of embryonically expressed genes. Nature. 1990 Jul 19;346(6281):245-50. PMID:2374589 doi:http://dx.doi.org/10.1038/346245a0
  8. Sinclair AH, Berta P, Palmer MS, Hawkins JR, Griffiths BL, Smith MJ, Foster JW, Frischauf AM, Lovell-Badge R, Goodfellow PN. A gene from the human sex-determining region encodes a protein with homology to a conserved DNA-binding motif. Nature. 1990 Jul 19;346(6281):240-4. PMID:1695712 doi:http://dx.doi.org/10.1038/346240a0
  9. Werner MH, Huth JR, Gronenborn AM, Clore GM. Molecular basis of human 46X,Y sex reversal revealed from the three-dimensional solution structure of the human SRY-DNA complex. Cell. 1995 Jun 2;81(5):705-14. PMID:7774012
  10. [2]
  11. McElreavey K, Barbaux S, Ion A, Fellous M. The genetic basis of murine and human sex determination: a review. Heredity. 1995 Dec;75 ( Pt 6):599–611. [3]
  12. Sekido R, Lovell-Badge R. Genetic control of testis development. Sex Dev Genet Mol Biol Evol Endocrinol Embryol Pathol Sex Determ Differ. 2013;7(1-3):21–32
  13. [4]
  14. Harley VR, Clarkson MJ, Argentaro A. The Molecular Action and Regulation of the Testis-Determining Factors, SRY (Sex-Determining Region on the Y Chromosome) and SOX9 [SRY-Related High-Mobility Group (HMG) Box 9]. Endocr Rev. 2003 Aug 1;24(4):466–87. [5]
  15. Larney C, Bailey TL, Koopman P. Switching on sex: transcriptional regulation of the testis-determining gene Sry. Dev Camb Engl. 2014 Jun;141(11):2195–205.
  16. Harley VR, Clarkson MJ, Argentaro A. The Molecular Action and Regulation of the Testis-Determining Factors, SRY (Sex-Determining Region on the Y Chromosome) and SOX9 [SRY-Related High-Mobility Group (HMG) Box 9]. Endocr Rev. 2003 Aug 1;24(4):466–87. [6]
  17. McElreavey K, Barbaux S, Ion A, Fellous M. The genetic basis of murine and human sex determination: a review. Heredity. 1995 Dec;75 ( Pt 6):599–611. [7]
  18. NCBI [8]
  19. [9]
  20. Harley VR, Clarkson MJ, Argentaro A. The Molecular Action and Regulation of the Testis-Determining Factors, SRY (Sex-Determining Region on the Y Chromosome) and SOX9 [SRY-Related High-Mobility Group (HMG) Box 9]. Endocr Rev. 2003 Aug 1;24(4):466–87. [10]
  21. Tang Y, Nilsson L. Interaction of human SRY protein with DNA: a molecular dynamics study. Proteins. 1998 Jun 1;31(4):417-33. PMID:9626701
  22. de la Chapelle A. Analytic review: nature and origin of males with XX sex chromosomes. Am J Hum Genet. 1972 Jan;24(1):71-105. PMID:4622299
Personal tools