Sandbox Reserved 1120
From Proteopedia
(Difference between revisions)
| Line 32: | Line 32: | ||
In 1905, Nettie Stevens discovered the "Y chromosome" (and the female XX and male XY patterns) while she was counting the chromosomes of beetles under the microscope<ref>Sumner, A. T. Sex Chromosomes and Sex Determination. Chromosomes: Organization and Function, 97-108. [http://www.nature.com/scitable/nated/topicpage/Sex-Chromosomes-and-Sex-Determination-44565]</ref>. | In 1905, Nettie Stevens discovered the "Y chromosome" (and the female XX and male XY patterns) while she was counting the chromosomes of beetles under the microscope<ref>Sumner, A. T. Sex Chromosomes and Sex Determination. Chromosomes: Organization and Function, 97-108. [http://www.nature.com/scitable/nated/topicpage/Sex-Chromosomes-and-Sex-Determination-44565]</ref>. | ||
During the next decades, a few theories were in competition. In 1921, Calvin Bridges's works on ''Drosophila melanogaster'' seemed to reveal that male characters acquisition is due to a genic balance between the genes contained in the X chromosome and those contained in the autosomes<ref>PMID: 17769897</ref>. | During the next decades, a few theories were in competition. In 1921, Calvin Bridges's works on ''Drosophila melanogaster'' seemed to reveal that male characters acquisition is due to a genic balance between the genes contained in the X chromosome and those contained in the autosomes<ref>PMID: 17769897</ref>. | ||
| - | In 1930, Ronald Fisher introduced the first Y-based control of sex theory by proposing two different models : either all the genes responsible for the male characters are located on the Y chromosome or there is a Y-located gene which regulates the expression of genes elsewhere in the genome<ref>PMID: 3046910</ref>. | + | In 1930, Ronald Fisher introduced the first Y-based control of sex theory by proposing two different models : either all the genes responsible for the male characters are located on the Y chromosome or there is a Y-located gene which regulates the expression of genes elsewhere in the genome<ref name="Goodfellow">PMID: 3046910</ref>. |
| - | As Alfred Jost had shown the testosterone produced by the testis is responsible for the entire male phenotype acquisition<ref>PMID: 4805859</ref>, Peter Neville Goodfellow proposed in 1988, that there is a gene (''TDF'' in human, ''Tdy'' in mice) on the Y chromosome which drives the development of the testis<ref | + | As Alfred Jost had shown the testosterone produced by the testis is responsible for the entire male phenotype acquisition<ref>PMID: 4805859</ref>, Peter Neville Goodfellow proposed in 1988, that there is a gene (''TDF'' in human, ''Tdy'' in mice) on the Y chromosome which drives the development of the testis<ref name="Goodfellow" />. In 1990, Goodfellow's hypothesis was validated with the discovery of ''Tdy'''s localisation. This gene's product (expressed during the male gonadal development) owns an amino-acid motif which shows homology to other known or putative DNA-binding domains. ''Tdy'' is therefore a transcriptional factor<ref>PMID: 2374589</ref>. The same year, the human ''SRY'' gene (accepted later as the ''TDF'') was discovered<ref>PMID: 1695712</ref>. |
Three dimensional structure of the SRY protein was determined in 1995 using NMR spectroscopy<ref>PMID:7774012</ref>. | Three dimensional structure of the SRY protein was determined in 1995 using NMR spectroscopy<ref>PMID:7774012</ref>. | ||
Revision as of 11:32, 30 January 2016
| This Sandbox is Reserved from 15/12/2015, through 15/06/2016 for use in the course "Structural Biology" taught by Bruno Kieffer at the University of Strasbourg, ESBS. This reservation includes Sandbox Reserved 1120 through Sandbox Reserved 1159. |
To get started:
More help: Help:Editing |
SRY protein (AKA TDF protein)
| |||||||||||
References
- ↑ 1.0 1.1 Tang Y, Nilsson L. Interaction of human SRY protein with DNA: a molecular dynamics study. Proteins. 1998 Jun 1;31(4):417-33. PMID:9626701
- ↑ Sumner, A. T. Sex Chromosomes and Sex Determination. Chromosomes: Organization and Function, 97-108. [1]
- ↑ Bridges CB. TRIPLOID INTERSEXES IN DROSOPHILA MELANOGASTER. Science. 1921 Sep 16;54(1394):252-4. PMID:17769897 doi:http://dx.doi.org/10.1126/science.54.1394.252
- ↑ 4.0 4.1 Goodfellow PN, Darling SM. Genetics of sex determination in man and mouse. Development. 1988 Feb;102(2):251-8. PMID:3046910
- ↑ Jost A. Becoming a male. Adv Biosci. 1973;10:3-13. PMID:4805859
- ↑ Gubbay J, Collignon J, Koopman P, Capel B, Economou A, Munsterberg A, Vivian N, Goodfellow P, Lovell-Badge R. A gene mapping to the sex-determining region of the mouse Y chromosome is a member of a novel family of embryonically expressed genes. Nature. 1990 Jul 19;346(6281):245-50. PMID:2374589 doi:http://dx.doi.org/10.1038/346245a0
- ↑ Sinclair AH, Berta P, Palmer MS, Hawkins JR, Griffiths BL, Smith MJ, Foster JW, Frischauf AM, Lovell-Badge R, Goodfellow PN. A gene from the human sex-determining region encodes a protein with homology to a conserved DNA-binding motif. Nature. 1990 Jul 19;346(6281):240-4. PMID:1695712 doi:http://dx.doi.org/10.1038/346240a0
- ↑ Werner MH, Huth JR, Gronenborn AM, Clore GM. Molecular basis of human 46X,Y sex reversal revealed from the three-dimensional solution structure of the human SRY-DNA complex. Cell. 1995 Jun 2;81(5):705-14. PMID:7774012
- ↑ NCBI gene
- ↑ McElreavey K, Barbaux S, Ion A, Fellous M. The genetic basis of murine and human sex determination: a review. Heredity. 1995 Dec;75 ( Pt 6):599–611. [2]
- ↑ Sekido R, Lovell-Badge R. Genetic control of testis development. Sex Dev Genet Mol Biol Evol Endocrinol Embryol Pathol Sex Determ Differ. 2013;7(1-3):21–32
- ↑ NCBI nucleotide
- ↑ Harley VR, Clarkson MJ, Argentaro A. The Molecular Action and Regulation of the Testis-Determining Factors, SRY (Sex-Determining Region on the Y Chromosome) and SOX9 [SRY-Related High-Mobility Group (HMG) Box 9]. Endocr Rev. 2003 Aug 1;24(4):466–87. [3]
- ↑ Larney C, Bailey TL, Koopman P. Switching on sex: transcriptional regulation of the testis-determining gene Sry. Dev Camb Engl. 2014 Jun;141(11):2195–205
- ↑ Murphy EC, Zhurkin VB, Louis JM, Cornilescu G, Clore GM. Structural basis for SRY-dependent 46-X,Y sex reversal: modulation of DNA bending by a naturally occurring point mutation. J Mol Biol. 2001 Sep 21;312(3):481-99. PMID:11563911 doi:http://dx.doi.org/10.1006/jmbi.2001.4977
- ↑ Harley VR, Clarkson MJ, Argentaro A. The Molecular Action and Regulation of the Testis-Determining Factors, SRY (Sex-Determining Region on the Y Chromosome) and SOX9 [SRY-Related High-Mobility Group (HMG) Box 9]. Endocr Rev. 2003 Aug 1;24(4):466–87. [4]
- ↑ McElreavey K, Barbaux S, Ion A, Fellous M. The genetic basis of murine and human sex determination: a review. Heredity. 1995 Dec;75 ( Pt 6):599–611. [5]
- ↑ NCBI NCBI gene: SOX9 SRY-BOX9 Homo sapiens
- ↑ EBI-Interpro: Anti-Mullerian-Hormon, N-term
- ↑ Harley VR, Clarkson MJ, Argentaro A. The Molecular Action and Regulation of the Testis-Determining Factors, SRY (Sex-Determining Region on the Y Chromosome) and SOX9 [SRY-Related High-Mobility Group (HMG) Box 9]. Endocr Rev. 2003 Aug 1;24(4):466–87 [6]
- ↑ Veitia RA. Of adrenaline and SRY in males (comment on DOI 10.1002/bies.201100159). Bioessays. 2014 May;36(5):438. doi: 10.1002/bies.201400026. Epub 2014 Mar 7. PMID:24604382 doi:http://dx.doi.org/10.1002/bies.201400026
- ↑ Veitia RA. Of adrenaline and SRY in males (comment on DOI 10.1002/bies.201100159). Bioessays. 2014 May;36(5):438. doi: 10.1002/bies.201400026. Epub 2014 Mar 7. PMID:24604382 doi:http://dx.doi.org/10.1002/bies.201400026
- ↑ Cohen, Tamara. The 'macho' gene that makes men behave aggressively has been found. The Daily Mail (2012). [7]
- ↑ Prokop JW, Watanabe IK, Turner ME, Underwood AC, Martins AS, Milsted A. From rat to human: regulation of Renin-Angiotensin system genes by sry. Int J Hypertens. 2012;2012:724240. doi: 10.1155/2012/724240. Epub 2012 Jan 22. PMID:22315667 doi:http://dx.doi.org/10.1155/2012/724240
- ↑ de la Chapelle A. Analytic review: nature and origin of males with XX sex chromosomes. Am J Hum Genet. 1972 Jan;24(1):71-105. PMID:4622299
- ↑ Xue TC, Zhang L, Ren ZG, Chen RX, Cui JF, Ge NL, Ye SL. Sex-determination gene SRY potentially associates with poor prognosis but not sex bias in hepatocellular carcinoma. Dig Dis Sci. 2015 Feb;60(2):427-35. doi: 10.1007/s10620-014-3377-y. Epub 2014 Oct, 2. PMID:25274159 doi:http://dx.doi.org/10.1007/s10620-014-3377-y
