| Structural highlights
2bjs is a 1 chain structure with sequence from A. nidulans. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
| Ligands: | , , , |
Related: | 1bk0, 1blz, 1hb1, 1hb2, 1hb3, 1hb4, 1ips, 1obn, 1oc1, 1odm, 1odn, 1qiq, 1qje, 1qjf, 1uzw, 1w03, 1w04, 1w05, 1w06, 1w3v, 1w3x, 2bu9 |
Activity: | Isopenicillin-N synthase, with EC number 1.21.3.1 |
Resources: | FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT |
Function
[IPNS_EMENI] Removes, in the presence of oxygen, 4 hydrogen atoms from delta-L-(alpha-aminoadipyl)-L-cysteinyl-D-valine (ACV) to form the azetidinone and thiazolidine rings of isopenicillin.
Evolutionary Conservation
Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
Publication Abstract from PubMed
Isopenicillin N synthase (IPNS) catalyses the four-electron oxidation of a tripeptide, l-delta-(alpha-aminoadipoyl)-l-cysteinyl-d-valine (ACV), to give isopenicillin N (IPN), the first-formed beta-lactam in penicillin and cephalosporin biosynthesis. IPNS catalysis is dependent upon an iron(II) cofactor and oxygen as a co-substrate. In the absence of substrate, the carbonyl oxygen of the side-chain amide of the penultimate residue, Gln330, co-ordinates to the active-site metal iron. Substrate binding ablates the interaction between Gln330 and the metal, triggering rearrangement of seven C-terminal residues, which move to take up a conformation that extends the final alpha-helix and encloses ACV in the active site. Mutagenesis studies are reported, which probe the role of the C-terminal and other aspects of the substrate binding pocket in IPNS. The hydrophobic nature of amino acid side-chains around the ACV binding pocket is important in catalysis. Deletion of seven C-terminal residues exposes the active site and leads to formation of a new type of thiol oxidation product. The isolated product is shown by LC-MS and NMR analyses to be the ene-thiol tautomer of a dithioester, made up from two molecules of ACV linked between the thiol sulfur of one tripeptide and the oxidised cysteinyl beta-carbon of the other. A mechanism for its formation is proposed, supported by an X-ray crystal structure, which shows the substrate ACV bound at the active site, its cysteinyl beta-carbon exposed to attack by a second molecule of substrate, adjacent. Formation of this product constitutes a new mode of reaction for IPNS and non-heme iron oxidases in general.
Terminally Truncated Isopenicillin N Synthase Generates a Dithioester Product: Evidence for a Thioaldehyde Intermediate during Catalysis and a New Mode of Reaction for Non-Heme Iron Oxidases.,McNeill LA, Brown TJN, Sami M, Clifton IJ, Burzlaff NI, Claridge TDW, Adlington RM, Baldwin JE, Rutledge PJ, Schofield CJ Chemistry. 2017 Sep 18;23(52):12815-12824. doi: 10.1002/chem.201701592. Epub 2017, Aug 21. PMID:28703303[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ McNeill LA, Brown TJN, Sami M, Clifton IJ, Burzlaff NI, Claridge TDW, Adlington RM, Baldwin JE, Rutledge PJ, Schofield CJ. Terminally Truncated Isopenicillin N Synthase Generates a Dithioester Product: Evidence for a Thioaldehyde Intermediate during Catalysis and a New Mode of Reaction for Non-Heme Iron Oxidases. Chemistry. 2017 Sep 18;23(52):12815-12824. doi: 10.1002/chem.201701592. Epub 2017, Aug 21. PMID:28703303 doi:http://dx.doi.org/10.1002/chem.201701592
|