Sandbox Reserved 1652

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 6: Line 6:
== Introduction ==
== Introduction ==
[(TRPV1)] (Vanilloid Transient Receptor Potential Type 1) is a non-selective ion channel which, in response to a stimulus, induces an incoming current of cations, primarily calcium and sodium, which causes depolarization of the cell. It is part of the [https://en.wikipedia.org/wiki/Transient_receptor_potential_channel TRP] (Transient Receptor Potential) superfamily and is the first in a subfamily of vanilloid-sensitive TRP channels / channels: TRPVs.
[(TRPV1)] (Vanilloid Transient Receptor Potential Type 1) is a non-selective ion channel which, in response to a stimulus, induces an incoming current of cations, primarily calcium and sodium, which causes depolarization of the cell. It is part of the [https://en.wikipedia.org/wiki/Transient_receptor_potential_channel TRP] (Transient Receptor Potential) superfamily and is the first in a subfamily of vanilloid-sensitive TRP channels / channels: TRPVs.
-
This receptor is expressed by sensory neurons of the dorsal and trigeminal spinal ganglia which secrete CGRP (calcitonin gene-related peptide) and substance P, two neuropeptides. <ref>« TRPV1 », Wikipédia. sept. 09, 2020, Consulté le: déc. 28, 2020. [En ligne]. Disponible sur: https://fr.wikipedia.org/w/index.php?title=TRPV1&oldid=174570512.</ref>
+
This receptor is expressed by sensory neurons of the dorsal and trigeminal spinal ganglia which secrete CGRP (calcitonin gene-related peptide) and substance P, two neuropeptides.<ref>« TRPV1 », Wikipédia. sept. 09, 2020, Consulté le: déc. 28, 2020. [En ligne]. Disponible sur: https://fr.wikipedia.org/w/index.php?title=TRPV1&oldid=174570512.</ref>
== Structure of TRPV1 ==
== Structure of TRPV1 ==
Line 16: Line 16:
TRPV1 exists in two states : the open state and the closed state.<ref> T. Rosenbaum et S. A. Simon, « TRPV1 Receptors and Signal Transduction », in TRP Ion Channel Function in Sensory Transduction and Cellular Signaling Cascades, W. B. Liedtke et S. Heller, Éd. Boca Raton (FL): CRC Press/Taylor & Francis, 2007</ref>
TRPV1 exists in two states : the open state and the closed state.<ref> T. Rosenbaum et S. A. Simon, « TRPV1 Receptors and Signal Transduction », in TRP Ion Channel Function in Sensory Transduction and Cellular Signaling Cascades, W. B. Liedtke et S. Heller, Éd. Boca Raton (FL): CRC Press/Taylor & Francis, 2007</ref>
-
The N-terminal region has 6 repeats of [https://en.wikipedia.org/wiki/Ankyrin ankyrin]. N-terminal region is followed by a linker domain.<ref>« Structure of the TRPV1 ion channel determined by electron cryo-microscopy | Nature ».https://www.nature.com/articles/nature12822#Fig3 (consulté le déc. 28, 2020)</ref>
+
The N-terminal region has 6 repeats of [https://en.wikipedia.org/wiki/Ankyrin ankyrin]. N-terminal region is followed by a linker domain.<ref>« Structure of the TRPV1 ion channel determined by electron cryo-microscopy | Nature ».https://www.nature.com/articles/nature12822#Fig3 (consulté le déc. 28, 2020)</ref><ref>G. Smutzer et R. K. Devassy, « Integrating TRPV1 Receptor Function with Capsaicin Psychophysics », Advances in Pharmacological Sciences, janv. 14, 2016</ref>
-
<ref>G. Smutzer et R. K. Devassy, « Integrating TRPV1 Receptor Function with Capsaicin Psychophysics », Advances in Pharmacological Sciences, janv. 14, 2016</ref>
+
-
The transmembrane region is composed of six transmembrane a helices (S1-S6). S4 and S5 are separated by a linker parallel to the membrane. A small hydrophobic domain beetween S5 and S6 with a re-entrant loop constitutes the pore allowing the passage of ions through the TRPV1 receptor.<ref>« Structure of the TRPV1 ion channel determined by electron cryo-microscopy | Nature ». https://www.nature.com/articles/nature12822#Fig3 (consulté le déc. 28, 2020).</ref>
+
The transmembrane region is composed of six transmembrane a helices (S1-S6). S4 and S5 are separated by a linker parallel to the membrane. A small hydrophobic domain beetween S5 and S6 with a re-entrant loop constitutes the pore allowing the passage of ions through the TRPV1 receptor.<ref>« Structure of the TRPV1 ion channel determined by electron cryo-microscopy | Nature ». https://www.nature.com/articles/nature12822#Fig3 (consulté le déc. 28, 2020).</ref><ref>« TRPV1 », Wikipédia. sept. 09, 2020, Consulté le: déc. 28, 2020. [En ligne]. Disponible sur: https://fr.wikipedia.org/w/index.php?title=TRPV1&oldid=174570512.</ref>
-
<ref>« TRPV1 », Wikipédia. sept. 09, 2020, Consulté le: déc. 28, 2020. [En ligne]. Disponible sur: https://fr.wikipedia.org/w/index.php?title=TRPV1&oldid=174570512.</ref>
+
-
S1,S2,S3 helices contain aromatic side chain (S1 : Y441,Y444,Y555 S2: F488 S3 : F516)<ref>« Structure of the TRPV1 ion channel determined by electron cryo-microscopy | Nature ». https://www.nature.com/articles/nature12822#Fig3 (consulté le déc. 28, 2020)</ref>
+
S1,S2,S3 helices contain aromatic side chain (S1 : Y441,Y444,Y555 S2: F488 S3 : F516).<ref>« Structure of the TRPV1 ion channel determined by electron cryo-microscopy | Nature ». https://www.nature.com/articles/nature12822#Fig3 (consulté le déc. 28, 2020)</ref>
‘’’Threonin’’’ residu (T550) and ‘’’tyrosin’’’ residu (Y511) located on the fifth and the third transmembrane helices are very conserved. Threonin 550 and tyrosin 511 are implicated in TRPV1 activation by [https://en.wikipedia.org/wiki/Vanilloids vanilloids] and in pain sensation.<ref>R. Kumar, A. Hazan, A. Basu, N. Zalcman, H. Matzner, et A. Priel, « Tyrosine Residue in the TRPV1 Vanilloid Binding Pocket Regulates Deactivation Kinetics », J. Biol. Chem., vol. 291, no 26, p. 13855‑13863, juin 2016, doi: 10.1074/jbc.M116.726372.</ref>
‘’’Threonin’’’ residu (T550) and ‘’’tyrosin’’’ residu (Y511) located on the fifth and the third transmembrane helices are very conserved. Threonin 550 and tyrosin 511 are implicated in TRPV1 activation by [https://en.wikipedia.org/wiki/Vanilloids vanilloids] and in pain sensation.<ref>R. Kumar, A. Hazan, A. Basu, N. Zalcman, H. Matzner, et A. Priel, « Tyrosine Residue in the TRPV1 Vanilloid Binding Pocket Regulates Deactivation Kinetics », J. Biol. Chem., vol. 291, no 26, p. 13855‑13863, juin 2016, doi: 10.1074/jbc.M116.726372.</ref>
-
The S6 domain links the receptor to the C-terminal domain of TRPV1.The C-terminal is made of 150 amino acids and it contains ‘’’TRP domain’’’<ref>G. Smutzer et R. K. Devassy, « Integrating TRPV1 Receptor Function with Capsaicin Psychophysics », Advances in Pharmacological Sciences, janv. 14, 2016.</ref>.
+
The S6 domain links the receptor to the C-terminal domain of TRPV1.The C-terminal is made of 150 amino acids and it contains ‘’’TRP domain’’’.<ref>G. Smutzer et R. K. Devassy, « Integrating TRPV1 Receptor Function with Capsaicin Psychophysics », Advances in Pharmacological Sciences, janv. 14, 2016.</ref>
 +
 
The TRP domain is made of 23-25 aminoacids with a alpha helical structure, it is found in many TRP family members.<ref>« Structure of the TRPV1 ion channel determined by electron cryo-microscopy | Nature ». https://www.nature.com/articles/nature12822#Fig3 (consulté le déc. 28, 2020)</ref>
The TRP domain is made of 23-25 aminoacids with a alpha helical structure, it is found in many TRP family members.<ref>« Structure of the TRPV1 ion channel determined by electron cryo-microscopy | Nature ». https://www.nature.com/articles/nature12822#Fig3 (consulté le déc. 28, 2020)</ref>
Line 43: Line 42:
Capsaicin is an active compound in chili.
Capsaicin is an active compound in chili.
-
TRPV1 receptor has a ‘’’capsaicin-binding pocket’’’ formed by S3,S4 and S4-S5 linker. The capsaicin-binding pocket is surrounded by the residues Y511, S512,T550.<ref>F. Yang et J. Zheng, « Understand spiciness: mechanism of TRPV1 channel activation by capsaicin », Protein Cell, vol. 8, no 3, p. 169‑177, mars 2017, doi: 10.1007/s13238-016-0353-7.</ref>
+
TRPV1 receptor has a ‘’’capsaicin-binding pocket’’’ formed by S3,S4 and S4-S5 linker. The capsaicin-binding pocket is surrounded by the residues Y511, S512,T550.<ref>F. Yang et J. Zheng, « Understand spiciness: mechanism of TRPV1 channel activation by capsaicin », Protein Cell, vol. 8, no 3, p. 169‑177, mars 2017, doi: 10.1007/s13238-016-0353-7.</ref>
Bound [https://en.wikipedia.org/wiki/Capsaicin capsaicin] is oriented in a « tail-up, head down » configuration. In this configuration the vanillyl and amide groups of capsaicin form specific interactions with TRPV1,capsaicin is anchored into the receptor.<ref>F. Yang et al., « Structural mechanism underlying capsaicin binding and activation of the TRPV1 ion channel », Nat. Chem. Biol., vol. 11, no 7, Art. no 7, juill. 2015, doi: 10.1038/nchembio.1835.</ref>
Bound [https://en.wikipedia.org/wiki/Capsaicin capsaicin] is oriented in a « tail-up, head down » configuration. In this configuration the vanillyl and amide groups of capsaicin form specific interactions with TRPV1,capsaicin is anchored into the receptor.<ref>F. Yang et al., « Structural mechanism underlying capsaicin binding and activation of the TRPV1 ion channel », Nat. Chem. Biol., vol. 11, no 7, Art. no 7, juill. 2015, doi: 10.1038/nchembio.1835.</ref>
Line 49: Line 48:
The capsaicin cycle binds via hydrogen bounds to amino acids on the S3 helix (Y511, S513), on the S4-S5 linker (E571) and on the S6 helix (T671). The amid group of capsaicin binds the S4 helix (T551).<ref>G. Smutzer et R. K. Devassy, « Integrating TRPV1 Receptor Function with Capsaicin Psychophysics », Advances in Pharmacological Sciences, janv. 14, 2016.</ref>
The capsaicin cycle binds via hydrogen bounds to amino acids on the S3 helix (Y511, S513), on the S4-S5 linker (E571) and on the S6 helix (T671). The amid group of capsaicin binds the S4 helix (T551).<ref>G. Smutzer et R. K. Devassy, « Integrating TRPV1 Receptor Function with Capsaicin Psychophysics », Advances in Pharmacological Sciences, janv. 14, 2016.</ref>
-
 
Capsaicin maintains TRPV1 in an open state by «pull and contact» interactions. A conformational change wave spread over the whole pore.<ref>F. Yang et al., « The conformational wave in capsaicin activation of transient receptor potential vanilloid 1 ion channel », Nat. Commun., vol. 9, no 1, Art. no 1, juill. 2018, doi: 10.1038/s41467-018-05339-6.</ref>
Capsaicin maintains TRPV1 in an open state by «pull and contact» interactions. A conformational change wave spread over the whole pore.<ref>F. Yang et al., « The conformational wave in capsaicin activation of transient receptor potential vanilloid 1 ion channel », Nat. Commun., vol. 9, no 1, Art. no 1, juill. 2018, doi: 10.1038/s41467-018-05339-6.</ref>
Line 79: Line 77:
PKC phosphorlyates TRPV1 at S800,S502, PKA phosphorylates TRPV1 at S116.
PKC phosphorlyates TRPV1 at S800,S502, PKA phosphorylates TRPV1 at S116.
-
The phosphorylation of TRPV1 lead to an increase in the expression of TRPV1 at the membrane surface<ref>K. W. Ho, N. J. Ward, et D. J. Calkins, « TRPV1: a stress response protein in the central nervous system », Am. J. Neurodegener. Dis., vol. 1, no 1, p. 1‑14, avr. 2012.</ref>
+
The phosphorylation of TRPV1 lead to an increase in the expression of TRPV1 at the membrane surface.<ref>K. W. Ho, N. J. Ward, et D. J. Calkins, « TRPV1: a stress response protein in the central nervous system », Am. J. Neurodegener. Dis., vol. 1, no 1, p. 1‑14, avr. 2012.</ref>
-
Moreover, phosphorylated TRPV1 would have a reduced channel opening threshold. <ref>G. Bhave et al., « Protein kinase C phosphorylation sensitizes but does not activate the capsaicin receptor transient receptor potential vanilloid 1 (TRPV1) », Proc. Natl. Acad. Sci., vol. 100, no 21, p. 12480‑12485, oct. 2003, doi: 10.1073/pnas.2032100100.</ref>
+
Moreover, phosphorylated TRPV1 would have a reduced channel opening threshold.<ref>G. Bhave et al., « Protein kinase C phosphorylation sensitizes but does not activate the capsaicin receptor transient receptor potential vanilloid 1 (TRPV1) », Proc. Natl. Acad. Sci., vol. 100, no 21, p. 12480‑12485, oct. 2003, doi: 10.1073/pnas.2032100100.</ref>
As a result phosphorylated TRPV1 are more responsive to agonist because they are overexpressed and the same quantity of agonist leads to a better openings of ion channels.
As a result phosphorylated TRPV1 are more responsive to agonist because they are overexpressed and the same quantity of agonist leads to a better openings of ion channels.
Line 93: Line 91:
In 2011 Qutenza (NeurogesX) patch containing 8% of capsaicin has been markered in France and indicated in the ‘’’treatment of non-diabetic neuropathic pain’’’.
In 2011 Qutenza (NeurogesX) patch containing 8% of capsaicin has been markered in France and indicated in the ‘’’treatment of non-diabetic neuropathic pain’’’.
The absorption through the skin of these creams generated partial desensitization of the nerve endings. This is the cause of a decrease in painful sensations.<ref>A. Danigo, L. Magy, et C. Demiot, « TRPV1 dans les neuropathies douloureuses - Des modèles animaux aux perspectives thérapeutiques », médecine/sciences, vol. 29, no 6‑7, Art. no 6‑7, juin 2013, doi: 10.1051/medsci/2013296012.</ref>
The absorption through the skin of these creams generated partial desensitization of the nerve endings. This is the cause of a decrease in painful sensations.<ref>A. Danigo, L. Magy, et C. Demiot, « TRPV1 dans les neuropathies douloureuses - Des modèles animaux aux perspectives thérapeutiques », médecine/sciences, vol. 29, no 6‑7, Art. no 6‑7, juin 2013, doi: 10.1051/medsci/2013296012.</ref>
- 
Many laboratories are conducting clinical studies on oral TRPV1 antagonists: GlaxoSmithKline, Amgen, Merk-Neurogen, Abbot, Eli-Lilly-Glenmark, AstraZeneca and Japan Tobacco. The major problem with these pain relievers is the [https://en.wikipedia.org/wiki/Hyperthermia hyperthermia] generated in humans by AMG517 (Amgen lab) and ABT-102 (Abbott lab). These effects caused these studies to be stopped in phase I.<ref>A. Danigo, L. Magy, et C. Demiot, « TRPV1 dans les neuropathies douloureuses - Des modèles animaux aux perspectives thérapeutiques », médecine/sciences, vol. 29, no 6‑7, Art. no 6‑7, juin 2013, doi: 10.1051/medsci/2013296012.</ref>
Many laboratories are conducting clinical studies on oral TRPV1 antagonists: GlaxoSmithKline, Amgen, Merk-Neurogen, Abbot, Eli-Lilly-Glenmark, AstraZeneca and Japan Tobacco. The major problem with these pain relievers is the [https://en.wikipedia.org/wiki/Hyperthermia hyperthermia] generated in humans by AMG517 (Amgen lab) and ABT-102 (Abbott lab). These effects caused these studies to be stopped in phase I.<ref>A. Danigo, L. Magy, et C. Demiot, « TRPV1 dans les neuropathies douloureuses - Des modèles animaux aux perspectives thérapeutiques », médecine/sciences, vol. 29, no 6‑7, Art. no 6‑7, juin 2013, doi: 10.1051/medsci/2013296012.</ref>

Revision as of 19:45, 7 January 2021

This Sandbox is Reserved from 26/11/2020, through 26/11/2021 for use in the course "Structural Biology" taught by Bruno Kieffer at the University of Strasbourg, ESBS. This reservation includes Sandbox Reserved 1643 through Sandbox Reserved 1664.
To get started:
  • Click the edit this page tab at the top. Save the page after each step, then edit it again.
  • Click the 3D button (when editing, above the wikitext box) to insert Jmol.
  • show the Scene authoring tools, create a molecular scene, and save it. Copy the green link into the page.
  • Add a description of your scene. Use the buttons above the wikitext box for bold, italics, links, headlines, etc.

More help: Help:Editing

The Transient Receptor Potential cation channel subfamily V member 1 TRPV1

Caption for this structure

Drag the structure with the mouse to rotate

References

  1. « TRPV1 », Wikipédia. sept. 09, 2020, Consulté le: déc. 28, 2020. [En ligne]. Disponible sur: https://fr.wikipedia.org/w/index.php?title=TRPV1&oldid=174570512.
  2. « Structure of the TRPV1 ion channel determined by electron cryo-microscopy | Nature ». https://www.nature.com/articles/nature12822#Fig3 (consulté le déc. 28, 2020)
  3. « Structure of the TRPV1 ion channel determined by electron cryo-microscopy | Nature ». https://www.nature.com/articles/nature12822#Fig3 (consulté le déc. 28, 2020)
  4. T. Rosenbaum et S. A. Simon, « TRPV1 Receptors and Signal Transduction », in TRP Ion Channel Function in Sensory Transduction and Cellular Signaling Cascades, W. B. Liedtke et S. Heller, Éd. Boca Raton (FL): CRC Press/Taylor & Francis, 2007
  5. « Structure of the TRPV1 ion channel determined by electron cryo-microscopy | Nature ».https://www.nature.com/articles/nature12822#Fig3 (consulté le déc. 28, 2020)
  6. G. Smutzer et R. K. Devassy, « Integrating TRPV1 Receptor Function with Capsaicin Psychophysics », Advances in Pharmacological Sciences, janv. 14, 2016
  7. « Structure of the TRPV1 ion channel determined by electron cryo-microscopy | Nature ». https://www.nature.com/articles/nature12822#Fig3 (consulté le déc. 28, 2020).
  8. « TRPV1 », Wikipédia. sept. 09, 2020, Consulté le: déc. 28, 2020. [En ligne]. Disponible sur: https://fr.wikipedia.org/w/index.php?title=TRPV1&oldid=174570512.
  9. « Structure of the TRPV1 ion channel determined by electron cryo-microscopy | Nature ». https://www.nature.com/articles/nature12822#Fig3 (consulté le déc. 28, 2020)
  10. R. Kumar, A. Hazan, A. Basu, N. Zalcman, H. Matzner, et A. Priel, « Tyrosine Residue in the TRPV1 Vanilloid Binding Pocket Regulates Deactivation Kinetics », J. Biol. Chem., vol. 291, no 26, p. 13855‑13863, juin 2016, doi: 10.1074/jbc.M116.726372.
  11. G. Smutzer et R. K. Devassy, « Integrating TRPV1 Receptor Function with Capsaicin Psychophysics », Advances in Pharmacological Sciences, janv. 14, 2016.
  12. « Structure of the TRPV1 ion channel determined by electron cryo-microscopy | Nature ». https://www.nature.com/articles/nature12822#Fig3 (consulté le déc. 28, 2020)
  13. X. Yao, H.-Y. Kwan, et Y. Huang, « Regulation of TRP Channels by Phosphorylation », Neurosignals, vol. 14, no 6, p. 273‑280, 2005, doi: 10.1159/000093042
  14. F. Yang et J. Zheng, « Understand spiciness: mechanism of TRPV1 channel activation by capsaicin », Protein Cell, vol. 8, no 3, p. 169‑177, mars 2017, doi: 10.1007/s13238-016-0353-7.
  15. F. Yang et al., « Structural mechanism underlying capsaicin binding and activation of the TRPV1 ion channel », Nat. Chem. Biol., vol. 11, no 7, Art. no 7, juill. 2015, doi: 10.1038/nchembio.1835.
  16. G. Smutzer et R. K. Devassy, « Integrating TRPV1 Receptor Function with Capsaicin Psychophysics », Advances in Pharmacological Sciences, janv. 14, 2016.
  17. F. Yang et al., « The conformational wave in capsaicin activation of transient receptor potential vanilloid 1 ion channel », Nat. Commun., vol. 9, no 1, Art. no 1, juill. 2018, doi: 10.1038/s41467-018-05339-6.
  18. « TRPV1 », Wikipédia. sept. 09, 2020, Consulté le: déc. 28, 2020. [En ligne]. Disponible sur: https://fr.wikipedia.org/w/index.php?title=TRPV1&oldid=174570512
  19. K. Elokely et al., « Understanding TRPV1 activation by ligands: Insights from the binding modes of capsaicin and resiniferatoxin », Proc. Natl. Acad. Sci., vol. 113, no 2, p. E137‑E145, janv. 2016, doi:10.1073/pnas.1517288113.
  20. K. W. Ho, N. J. Ward, et D. J. Calkins, « TRPV1: a stress response protein in the central nervous system », Am. J. Neurodegener. Dis., vol. 1, no 1, p. 1‑14, avr. 2012.
  21. G. Smutzer et R. K. Devassy, « Integrating TRPV1 Receptor Function with Capsaicin Psychophysics », Advances in Pharmacological Sciences, janv. 14, 2016.
  22. K. W. Ho, N. J. Ward, et D. J. Calkins, « TRPV1: a stress response protein in the central nervous system », Am. J. Neurodegener. Dis., vol. 1, no 1, p. 1‑14, avr. 2012.
  23. G. Bhave et al., « Protein kinase C phosphorylation sensitizes but does not activate the capsaicin receptor transient receptor potential vanilloid 1 (TRPV1) », Proc. Natl. Acad. Sci., vol. 100, no 21, p. 12480‑12485, oct. 2003, doi: 10.1073/pnas.2032100100.
  24. A. Danigo, L. Magy, et C. Demiot, « TRPV1 dans les neuropathies douloureuses - Des modèles animaux aux perspectives thérapeutiques », médecine/sciences, vol. 29, no 6‑7, Art. no 6‑7, juin 2013, doi: 10.1051/medsci/2013296012.
  25. A. Danigo, L. Magy, et C. Demiot, « TRPV1 dans les neuropathies douloureuses - Des modèles animaux aux perspectives thérapeutiques », médecine/sciences, vol. 29, no 6‑7, Art. no 6‑7, juin 2013, doi: 10.1051/medsci/2013296012.
Personal tools