Sandbox Reserved 1652

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 9: Line 9:
== Structure of TRPV1 ==
== Structure of TRPV1 ==
-
The TRPV1 receptor is a transmembrane protein receptor. It is made up of ‘’’839 amino acids’’’. It’s molecular weight is ‘’’94 938Da’’’.<ref>« Structure of the TRPV1 ion channel determined by electron cryo-microscopy | Nature ». https://www.nature.com/articles/nature12822#Fig3 (consulté le déc. 28, 2020)</ref>
+
The TRPV1 receptor is a transmembrane protein receptor. It is made up of '''839 amino acids'''. It’s molecular weight is '''94 938Da'''.<ref>« Structure of the TRPV1 ion channel determined by electron cryo-microscopy | Nature ». https://www.nature.com/articles/nature12822#Fig3 (consulté le déc. 28, 2020)</ref>
-
TRPV1 are ‘’’tetrameric’’’ channel type receptors. The four subunits from a symmetry plane around a pore allowing the passage of ions.
+
TRPV1 are '''tetrameric''' channel type receptors. The four subunits from a symmetry plane around a pore allowing the passage of ions.
Each TRPV1 subunits are made of one N-terminal tail, one transmembrane region, a C-terminal tail preceded by a TRP domain. The N-terminal and C-terminal region are intracellular. N and C terminal region are responsible of 70% of the total mass of TRPV1.<ref>« Structure of the TRPV1 ion channel determined by electron cryo-microscopy | Nature ». https://www.nature.com/articles/nature12822#Fig3 (consulté le déc. 28, 2020)</ref>
Each TRPV1 subunits are made of one N-terminal tail, one transmembrane region, a C-terminal tail preceded by a TRP domain. The N-terminal and C-terminal region are intracellular. N and C terminal region are responsible of 70% of the total mass of TRPV1.<ref>« Structure of the TRPV1 ion channel determined by electron cryo-microscopy | Nature ». https://www.nature.com/articles/nature12822#Fig3 (consulté le déc. 28, 2020)</ref>
Line 22: Line 22:
S1,S2,S3 helices contain aromatic side chain (S1 : Y441,Y444,Y555 S2: F488 S3 : F516).<ref>« Structure of the TRPV1 ion channel determined by electron cryo-microscopy | Nature ». https://www.nature.com/articles/nature12822#Fig3 (consulté le déc. 28, 2020)</ref>
S1,S2,S3 helices contain aromatic side chain (S1 : Y441,Y444,Y555 S2: F488 S3 : F516).<ref>« Structure of the TRPV1 ion channel determined by electron cryo-microscopy | Nature ». https://www.nature.com/articles/nature12822#Fig3 (consulté le déc. 28, 2020)</ref>
-
‘’’Threonin’’’ residu (T550) and ‘’’tyrosin’’’ residu (Y511) located on the fifth and the third transmembrane helices are very conserved. Threonin 550 and tyrosin 511 are implicated in TRPV1 activation by [https://en.wikipedia.org/wiki/Vanilloids vanilloids] and in pain sensation.<ref>R. Kumar, A. Hazan, A. Basu, N. Zalcman, H. Matzner, et A. Priel, « Tyrosine Residue in the TRPV1 Vanilloid Binding Pocket Regulates Deactivation Kinetics », J. Biol. Chem., vol. 291, no 26, p. 13855‑13863, juin 2016, doi: 10.1074/jbc.M116.726372.</ref>
+
'''Threonin''' residu (T550) and '''tyrosin''' residu (Y511) located on the fifth and the third transmembrane helices are very conserved. Threonin 550 and tyrosin 511 are implicated in TRPV1 activation by [https://en.wikipedia.org/wiki/Vanilloids vanilloids] and in pain sensation.<ref>R. Kumar, A. Hazan, A. Basu, N. Zalcman, H. Matzner, et A. Priel, « Tyrosine Residue in the TRPV1 Vanilloid Binding Pocket Regulates Deactivation Kinetics », J. Biol. Chem., vol. 291, no 26, p. 13855‑13863, juin 2016, doi: 10.1074/jbc.M116.726372.</ref>
-
The S6 domain links the receptor to the C-terminal domain of TRPV1.The C-terminal is made of 150 amino acids and it contains ‘’’TRP domain’’’.<ref>G. Smutzer et R. K. Devassy, « Integrating TRPV1 Receptor Function with Capsaicin Psychophysics », Advances in Pharmacological Sciences, janv. 14, 2016.</ref>
+
The S6 domain links the receptor to the C-terminal domain of TRPV1.The C-terminal is made of 150 amino acids and it contains '''TRP domain'''.<ref>G. Smutzer et R. K. Devassy, « Integrating TRPV1 Receptor Function with Capsaicin Psychophysics », Advances in Pharmacological Sciences, janv. 14, 2016.</ref>
The TRP domain is made of 23-25 aminoacids with a alpha helical structure, it is found in many TRP family members.<ref>« Structure of the TRPV1 ion channel determined by electron cryo-microscopy | Nature ». https://www.nature.com/articles/nature12822#Fig3 (consulté le déc. 28, 2020)</ref>
The TRP domain is made of 23-25 aminoacids with a alpha helical structure, it is found in many TRP family members.<ref>« Structure of the TRPV1 ion channel determined by electron cryo-microscopy | Nature ». https://www.nature.com/articles/nature12822#Fig3 (consulté le déc. 28, 2020)</ref>
Line 33: Line 33:
== Relation structure-function ==
== Relation structure-function ==
-
TRPV1 is a ‘’’homotetramer’’’ in which each subunit has several phosphorylation sites for PKA (protein kinase A), PKC (protein kinase C) and CaMkII (Ca2 + / calmodulin-dependent kinase II), as well as numerous glycosylation sites. These domains play a crucial role in the regulation of TRPV1 activity.
+
TRPV1 is a '''homotetramer''' in which each subunit has several phosphorylation sites for PKA (protein kinase A), PKC (protein kinase C) and CaMkII (Ca2 + / calmodulin-dependent kinase II), as well as numerous glycosylation sites. These domains play a crucial role in the regulation of TRPV1 activity.
The state of the channel is modulated by two types of molecules: agents that promote its opening of the channel, called [https://en.wikipedia.org/wiki/Agonist agonists], and agents that induce its closure or prevent its opening, called [https://en.wikipedia.org/wiki/Antagonist antagonists].
The state of the channel is modulated by two types of molecules: agents that promote its opening of the channel, called [https://en.wikipedia.org/wiki/Agonist agonists], and agents that induce its closure or prevent its opening, called [https://en.wikipedia.org/wiki/Antagonist antagonists].
Line 42: Line 42:
Capsaicin is an active compound in chili.
Capsaicin is an active compound in chili.
-
TRPV1 receptor has a ‘’’capsaicin-binding pocket’’’ formed by S3,S4 and S4-S5 linker. The capsaicin-binding pocket is surrounded by the residues Y511, S512,T550.<ref>F. Yang et J. Zheng, « Understand spiciness: mechanism of TRPV1 channel activation by capsaicin », Protein Cell, vol. 8, no 3, p. 169‑177, mars 2017, doi: 10.1007/s13238-016-0353-7.</ref>
+
TRPV1 receptor has a '''capsaicin-binding pocket''' formed by S3,S4 and S4-S5 linker. The capsaicin-binding pocket is surrounded by the residues Y511, S512,T550.<ref>F. Yang et J. Zheng, « Understand spiciness: mechanism of TRPV1 channel activation by capsaicin », Protein Cell, vol. 8, no 3, p. 169‑177, mars 2017, doi: 10.1007/s13238-016-0353-7.</ref>
Bound [https://en.wikipedia.org/wiki/Capsaicin capsaicin] is oriented in a « tail-up, head down » configuration. In this configuration the vanillyl and amide groups of capsaicin form specific interactions with TRPV1,capsaicin is anchored into the receptor.<ref>F. Yang et al., « Structural mechanism underlying capsaicin binding and activation of the TRPV1 ion channel », Nat. Chem. Biol., vol. 11, no 7, Art. no 7, juill. 2015, doi: 10.1038/nchembio.1835.</ref>
Bound [https://en.wikipedia.org/wiki/Capsaicin capsaicin] is oriented in a « tail-up, head down » configuration. In this configuration the vanillyl and amide groups of capsaicin form specific interactions with TRPV1,capsaicin is anchored into the receptor.<ref>F. Yang et al., « Structural mechanism underlying capsaicin binding and activation of the TRPV1 ion channel », Nat. Chem. Biol., vol. 11, no 7, Art. no 7, juill. 2015, doi: 10.1038/nchembio.1835.</ref>
Line 56: Line 56:
[[Image : https://upload.wikimedia.org/wikipedia/commons/c/c5/Resiniferatoxin.svg]]
[[Image : https://upload.wikimedia.org/wikipedia/commons/c/c5/Resiniferatoxin.svg]]
-
[(Resiniferatoxin)] is a ‘’’natural analogue of capsaicin’’’. It is the most potent TRPV1 agonist known, with a binding affinity for TRPV1 ~500x higher than that of capsaicin.
+
[(Resiniferatoxin)] is a '''natural analogue of capsaicin'''. It is the most potent TRPV1 agonist known, with a binding affinity for TRPV1 ~500x higher than that of capsaicin.
Stimulation by resiniferatoxin makes this ion channel permeable to cations, especially calcium.
Stimulation by resiniferatoxin makes this ion channel permeable to cations, especially calcium.
The pocket size characteristics of the TRPV1-RTX allow the installation of large structures such as the RTX :
The pocket size characteristics of the TRPV1-RTX allow the installation of large structures such as the RTX :
-
The ‘’’sub-pocket’’’ near Y511 is shallow in the TRPV1-RTX because Y511 and E570 are close and I569 is oriented towards the vanilloid pocket.
+
The '''sub-pocket''' near Y511 is shallow in the TRPV1-RTX because Y511 and E570 are close and I569 is oriented towards the vanilloid pocket.
The sub-pocket near L669, V583, and F587 is wide due to the projection of these amino acids out of the vanilloid pocket. This sub-pocket accommodates the [https://en.wikipedia.org/wiki/Diterpene diterpene] group of the RTX.
The sub-pocket near L669, V583, and F587 is wide due to the projection of these amino acids out of the vanilloid pocket. This sub-pocket accommodates the [https://en.wikipedia.org/wiki/Diterpene diterpene] group of the RTX.
Line 71: Line 71:
#Sensitization
#Sensitization
-
’’Phosphorylation’’’ of the TRPV1 receptor leads to its sensitization.
+
'''Phosphorylation''' of the TRPV1 receptor leads to its sensitization.
Phosphorylations occurs on multiple phosphorylation sites at both N-terminal and C-terminal sites of TRPV1 by [https://en.wikipedia.org/wiki/Kinase kinases]. Phosphorylations are either caused by PKC (IP3 signalling), by PKA (AMPc signalling) or by CamKII an PI3K.<ref>K. W. Ho, N. J. Ward, et D. J. Calkins, « TRPV1: a stress response protein in the central nervous system », Am. J. Neurodegener. Dis., vol. 1, no 1, p. 1‑14, avr. 2012.</ref><ref>G. Smutzer et R. K. Devassy, « Integrating TRPV1 Receptor Function with Capsaicin Psychophysics », Advances in Pharmacological Sciences, janv. 14, 2016.</ref>
Phosphorylations occurs on multiple phosphorylation sites at both N-terminal and C-terminal sites of TRPV1 by [https://en.wikipedia.org/wiki/Kinase kinases]. Phosphorylations are either caused by PKC (IP3 signalling), by PKA (AMPc signalling) or by CamKII an PI3K.<ref>K. W. Ho, N. J. Ward, et D. J. Calkins, « TRPV1: a stress response protein in the central nervous system », Am. J. Neurodegener. Dis., vol. 1, no 1, p. 1‑14, avr. 2012.</ref><ref>G. Smutzer et R. K. Devassy, « Integrating TRPV1 Receptor Function with Capsaicin Psychophysics », Advances in Pharmacological Sciences, janv. 14, 2016.</ref>
Line 83: Line 83:
#Desensitization
#Desensitization
-
A repeated exposure of TRPV1 to capsaicin fails to activate the receptor. It occurs by a CA2+-dependent mechanism that leads to a ‘’’desphosphorylation’’’ by the calcineurin [https://en.wikipedia.org/wiki/Phosphatase phosphatase] of the serine and threonine residues which have been previously phosphorylated by PKA. Thus, the decrease in TRPV1 phosphorylation diminish the sensitivity of the capsaicin channel and so a decrease in the response of the capsaicin by ‘’’negative feedback’’’.
+
A repeated exposure of TRPV1 to capsaicin fails to activate the receptor. It occurs by a CA2+-dependent mechanism that leads to a '''desphosphorylation''' by the calcineurin [https://en.wikipedia.org/wiki/Phosphatase phosphatase] of the serine and threonine residues which have been previously phosphorylated by PKA. Thus, the decrease in TRPV1 phosphorylation diminish the sensitivity of the capsaicin channel and so a decrease in the response of the capsaicin by '''negative feedback'''.
-
The influx of cations causes the ‘’’depolarisation’’’ of the neuron, which transmits signals like those that would be transmitted if the innervated tissue were burnt or damaged. This stimulation is followed by desensitisation and analgesia, partly because the ‘’’nerve endings die’’’ due to calcium overload.
+
The influx of cations causes the '''depolarisation''' of the neuron, which transmits signals like those that would be transmitted if the innervated tissue were burnt or damaged. This stimulation is followed by desensitisation and analgesia, partly because the '''nerve endings die''' due to calcium overload.
== Implication of TRPV1 in the treatment of pain ==
== Implication of TRPV1 in the treatment of pain ==
-
In 2011 Qutenza (NeurogesX) patch containing 8% of capsaicin has been markered in France and indicated in the ‘’’treatment of non-diabetic neuropathic pain’’’.
+
In 2011 Qutenza (NeurogesX) patch containing 8% of capsaicin has been markered in France and indicated in the '''treatment of non-diabetic neuropathic pain'''.
The absorption through the skin of these creams generated partial desensitization of the nerve endings. This is the cause of a decrease in painful sensations.<ref>A. Danigo, L. Magy, et C. Demiot, « TRPV1 dans les neuropathies douloureuses - Des modèles animaux aux perspectives thérapeutiques », médecine/sciences, vol. 29, no 6‑7, Art. no 6‑7, juin 2013, doi: 10.1051/medsci/2013296012.</ref>
The absorption through the skin of these creams generated partial desensitization of the nerve endings. This is the cause of a decrease in painful sensations.<ref>A. Danigo, L. Magy, et C. Demiot, « TRPV1 dans les neuropathies douloureuses - Des modèles animaux aux perspectives thérapeutiques », médecine/sciences, vol. 29, no 6‑7, Art. no 6‑7, juin 2013, doi: 10.1051/medsci/2013296012.</ref>

Revision as of 19:53, 7 January 2021

This Sandbox is Reserved from 26/11/2020, through 26/11/2021 for use in the course "Structural Biology" taught by Bruno Kieffer at the University of Strasbourg, ESBS. This reservation includes Sandbox Reserved 1643 through Sandbox Reserved 1664.
To get started:
  • Click the edit this page tab at the top. Save the page after each step, then edit it again.
  • Click the 3D button (when editing, above the wikitext box) to insert Jmol.
  • show the Scene authoring tools, create a molecular scene, and save it. Copy the green link into the page.
  • Add a description of your scene. Use the buttons above the wikitext box for bold, italics, links, headlines, etc.

More help: Help:Editing

The Transient Receptor Potential cation channel subfamily V member 1 TRPV1

Caption for this structure

Drag the structure with the mouse to rotate

References

  1. « TRPV1 », Wikipédia. sept. 09, 2020, Consulté le: déc. 28, 2020. [En ligne]. Disponible sur: https://fr.wikipedia.org/w/index.php?title=TRPV1&oldid=174570512.
  2. « Structure of the TRPV1 ion channel determined by electron cryo-microscopy | Nature ». https://www.nature.com/articles/nature12822#Fig3 (consulté le déc. 28, 2020)
  3. « Structure of the TRPV1 ion channel determined by electron cryo-microscopy | Nature ». https://www.nature.com/articles/nature12822#Fig3 (consulté le déc. 28, 2020)
  4. T. Rosenbaum et S. A. Simon, « TRPV1 Receptors and Signal Transduction », in TRP Ion Channel Function in Sensory Transduction and Cellular Signaling Cascades, W. B. Liedtke et S. Heller, Éd. Boca Raton (FL): CRC Press/Taylor & Francis, 2007
  5. « Structure of the TRPV1 ion channel determined by electron cryo-microscopy | Nature ».https://www.nature.com/articles/nature12822#Fig3 (consulté le déc. 28, 2020)
  6. G. Smutzer et R. K. Devassy, « Integrating TRPV1 Receptor Function with Capsaicin Psychophysics », Advances in Pharmacological Sciences, janv. 14, 2016
  7. « Structure of the TRPV1 ion channel determined by electron cryo-microscopy | Nature ». https://www.nature.com/articles/nature12822#Fig3 (consulté le déc. 28, 2020).
  8. « TRPV1 », Wikipédia. sept. 09, 2020, Consulté le: déc. 28, 2020. [En ligne]. Disponible sur: https://fr.wikipedia.org/w/index.php?title=TRPV1&oldid=174570512.
  9. « Structure of the TRPV1 ion channel determined by electron cryo-microscopy | Nature ». https://www.nature.com/articles/nature12822#Fig3 (consulté le déc. 28, 2020)
  10. R. Kumar, A. Hazan, A. Basu, N. Zalcman, H. Matzner, et A. Priel, « Tyrosine Residue in the TRPV1 Vanilloid Binding Pocket Regulates Deactivation Kinetics », J. Biol. Chem., vol. 291, no 26, p. 13855‑13863, juin 2016, doi: 10.1074/jbc.M116.726372.
  11. G. Smutzer et R. K. Devassy, « Integrating TRPV1 Receptor Function with Capsaicin Psychophysics », Advances in Pharmacological Sciences, janv. 14, 2016.
  12. « Structure of the TRPV1 ion channel determined by electron cryo-microscopy | Nature ». https://www.nature.com/articles/nature12822#Fig3 (consulté le déc. 28, 2020)
  13. X. Yao, H.-Y. Kwan, et Y. Huang, « Regulation of TRP Channels by Phosphorylation », Neurosignals, vol. 14, no 6, p. 273‑280, 2005, doi: 10.1159/000093042
  14. F. Yang et J. Zheng, « Understand spiciness: mechanism of TRPV1 channel activation by capsaicin », Protein Cell, vol. 8, no 3, p. 169‑177, mars 2017, doi: 10.1007/s13238-016-0353-7.
  15. F. Yang et al., « Structural mechanism underlying capsaicin binding and activation of the TRPV1 ion channel », Nat. Chem. Biol., vol. 11, no 7, Art. no 7, juill. 2015, doi: 10.1038/nchembio.1835.
  16. G. Smutzer et R. K. Devassy, « Integrating TRPV1 Receptor Function with Capsaicin Psychophysics », Advances in Pharmacological Sciences, janv. 14, 2016.
  17. F. Yang et al., « The conformational wave in capsaicin activation of transient receptor potential vanilloid 1 ion channel », Nat. Commun., vol. 9, no 1, Art. no 1, juill. 2018, doi: 10.1038/s41467-018-05339-6.
  18. « TRPV1 », Wikipédia. sept. 09, 2020, Consulté le: déc. 28, 2020. [En ligne]. Disponible sur: https://fr.wikipedia.org/w/index.php?title=TRPV1&oldid=174570512
  19. K. Elokely et al., « Understanding TRPV1 activation by ligands: Insights from the binding modes of capsaicin and resiniferatoxin », Proc. Natl. Acad. Sci., vol. 113, no 2, p. E137‑E145, janv. 2016, doi:10.1073/pnas.1517288113.
  20. K. W. Ho, N. J. Ward, et D. J. Calkins, « TRPV1: a stress response protein in the central nervous system », Am. J. Neurodegener. Dis., vol. 1, no 1, p. 1‑14, avr. 2012.
  21. G. Smutzer et R. K. Devassy, « Integrating TRPV1 Receptor Function with Capsaicin Psychophysics », Advances in Pharmacological Sciences, janv. 14, 2016.
  22. K. W. Ho, N. J. Ward, et D. J. Calkins, « TRPV1: a stress response protein in the central nervous system », Am. J. Neurodegener. Dis., vol. 1, no 1, p. 1‑14, avr. 2012.
  23. G. Bhave et al., « Protein kinase C phosphorylation sensitizes but does not activate the capsaicin receptor transient receptor potential vanilloid 1 (TRPV1) », Proc. Natl. Acad. Sci., vol. 100, no 21, p. 12480‑12485, oct. 2003, doi: 10.1073/pnas.2032100100.
  24. A. Danigo, L. Magy, et C. Demiot, « TRPV1 dans les neuropathies douloureuses - Des modèles animaux aux perspectives thérapeutiques », médecine/sciences, vol. 29, no 6‑7, Art. no 6‑7, juin 2013, doi: 10.1051/medsci/2013296012.
  25. A. Danigo, L. Magy, et C. Demiot, « TRPV1 dans les neuropathies douloureuses - Des modèles animaux aux perspectives thérapeutiques », médecine/sciences, vol. 29, no 6‑7, Art. no 6‑7, juin 2013, doi: 10.1051/medsci/2013296012.
Personal tools