Sandbox Reserved 1652
From Proteopedia
(Difference between revisions)
Line 36: | Line 36: | ||
The state of the channel is modulated by two types of molecules: agents that promote its opening of the channel, called [https://en.wikipedia.org/wiki/Agonist agonists], and agents that induce its closure or prevent its opening, called [https://en.wikipedia.org/wiki/Antagonist antagonists]. | The state of the channel is modulated by two types of molecules: agents that promote its opening of the channel, called [https://en.wikipedia.org/wiki/Agonist agonists], and agents that induce its closure or prevent its opening, called [https://en.wikipedia.org/wiki/Antagonist antagonists]. | ||
- | + | == Activators == | |
- | + | ===Capsaicin=== | |
[[Image : https://commons.wikimedia.org/wiki/File:Capsaicin_Formulae.png?uselang=fr]] | [[Image : https://commons.wikimedia.org/wiki/File:Capsaicin_Formulae.png?uselang=fr]] | ||
Line 52: | Line 52: | ||
This leads to the massive enter of Ca2+ and Na+ in the cytoplasm of the nerve fiber and to the depolarization of the nerve fiber. When depolarization reach a theshold value it triggers the generation of an [https://en.wikipedia.org/wiki/Action_potential action potential] causing a painful sensation.<ref>« TRPV1 », Wikipédia. sept. 09, 2020, Consulté le: déc. 28, 2020. [En ligne]. Disponible sur: https://fr.wikipedia.org/w/index.php?title=TRPV1&oldid=174570512</ref> | This leads to the massive enter of Ca2+ and Na+ in the cytoplasm of the nerve fiber and to the depolarization of the nerve fiber. When depolarization reach a theshold value it triggers the generation of an [https://en.wikipedia.org/wiki/Action_potential action potential] causing a painful sensation.<ref>« TRPV1 », Wikipédia. sept. 09, 2020, Consulté le: déc. 28, 2020. [En ligne]. Disponible sur: https://fr.wikipedia.org/w/index.php?title=TRPV1&oldid=174570512</ref> | ||
- | + | ===Résinifératoxine (RTX)=== | |
[[Image : https://upload.wikimedia.org/wikipedia/commons/c/c5/Resiniferatoxin.svg]] | [[Image : https://upload.wikimedia.org/wikipedia/commons/c/c5/Resiniferatoxin.svg]] | ||
Line 67: | Line 67: | ||
The aromatic is located deeper in the sub-pocket near Y511 and is oriented almost parallel to the aromatic side chain of Y511, so it establishes a strong interaction π-π. The aromatic hydroxyl and methoxy groups of the RTX form strong hydrogen bonds with E570, R557 and S512. The ester group is linked to Y511 and T550 by hydrogen bonds.<ref>K. Elokely et al., « Understanding TRPV1 activation by ligands: Insights from the binding modes of capsaicin and resiniferatoxin », Proc. Natl. Acad. Sci., vol. 113, no 2, p. E137‑E145, janv. 2016, doi:10.1073/pnas.1517288113.</ref> | The aromatic is located deeper in the sub-pocket near Y511 and is oriented almost parallel to the aromatic side chain of Y511, so it establishes a strong interaction π-π. The aromatic hydroxyl and methoxy groups of the RTX form strong hydrogen bonds with E570, R557 and S512. The ester group is linked to Y511 and T550 by hydrogen bonds.<ref>K. Elokely et al., « Understanding TRPV1 activation by ligands: Insights from the binding modes of capsaicin and resiniferatoxin », Proc. Natl. Acad. Sci., vol. 113, no 2, p. E137‑E145, janv. 2016, doi:10.1073/pnas.1517288113.</ref> | ||
- | + | == Regulation == | |
- | + | ===Sensitization=== | |
- | + | ||
'''Phosphorylation''' of the TRPV1 receptor leads to its sensitization. | '''Phosphorylation''' of the TRPV1 receptor leads to its sensitization. | ||
Line 81: | Line 80: | ||
As a result phosphorylated TRPV1 are more responsive to agonist because they are overexpressed and the same quantity of agonist leads to a better openings of ion channels. | As a result phosphorylated TRPV1 are more responsive to agonist because they are overexpressed and the same quantity of agonist leads to a better openings of ion channels. | ||
- | + | ===Desensitization=== | |
A repeated exposure of TRPV1 to capsaicin fails to activate the receptor. It occurs by a CA2+-dependent mechanism that leads to a '''desphosphorylation''' by the calcineurin [https://en.wikipedia.org/wiki/Phosphatase phosphatase] of the serine and threonine residues which have been previously phosphorylated by PKA. Thus, the decrease in TRPV1 phosphorylation diminish the sensitivity of the capsaicin channel and so a decrease in the response of the capsaicin by '''negative feedback'''. | A repeated exposure of TRPV1 to capsaicin fails to activate the receptor. It occurs by a CA2+-dependent mechanism that leads to a '''desphosphorylation''' by the calcineurin [https://en.wikipedia.org/wiki/Phosphatase phosphatase] of the serine and threonine residues which have been previously phosphorylated by PKA. Thus, the decrease in TRPV1 phosphorylation diminish the sensitivity of the capsaicin channel and so a decrease in the response of the capsaicin by '''negative feedback'''. |
Revision as of 19:56, 7 January 2021
This Sandbox is Reserved from 26/11/2020, through 26/11/2021 for use in the course "Structural Biology" taught by Bruno Kieffer at the University of Strasbourg, ESBS. This reservation includes Sandbox Reserved 1643 through Sandbox Reserved 1664. |
To get started:
More help: Help:Editing |
The Transient Receptor Potential cation channel subfamily V member 1 TRPV1
|
References
- ↑ « TRPV1 », Wikipédia. sept. 09, 2020, Consulté le: déc. 28, 2020. [En ligne]. Disponible sur: https://fr.wikipedia.org/w/index.php?title=TRPV1&oldid=174570512.
- ↑ « Structure of the TRPV1 ion channel determined by electron cryo-microscopy | Nature ». https://www.nature.com/articles/nature12822#Fig3 (consulté le déc. 28, 2020)
- ↑ « Structure of the TRPV1 ion channel determined by electron cryo-microscopy | Nature ». https://www.nature.com/articles/nature12822#Fig3 (consulté le déc. 28, 2020)
- ↑ T. Rosenbaum et S. A. Simon, « TRPV1 Receptors and Signal Transduction », in TRP Ion Channel Function in Sensory Transduction and Cellular Signaling Cascades, W. B. Liedtke et S. Heller, Éd. Boca Raton (FL): CRC Press/Taylor & Francis, 2007
- ↑ « Structure of the TRPV1 ion channel determined by electron cryo-microscopy | Nature ».https://www.nature.com/articles/nature12822#Fig3 (consulté le déc. 28, 2020)
- ↑ G. Smutzer et R. K. Devassy, « Integrating TRPV1 Receptor Function with Capsaicin Psychophysics », Advances in Pharmacological Sciences, janv. 14, 2016
- ↑ « Structure of the TRPV1 ion channel determined by electron cryo-microscopy | Nature ». https://www.nature.com/articles/nature12822#Fig3 (consulté le déc. 28, 2020).
- ↑ « TRPV1 », Wikipédia. sept. 09, 2020, Consulté le: déc. 28, 2020. [En ligne]. Disponible sur: https://fr.wikipedia.org/w/index.php?title=TRPV1&oldid=174570512.
- ↑ « Structure of the TRPV1 ion channel determined by electron cryo-microscopy | Nature ». https://www.nature.com/articles/nature12822#Fig3 (consulté le déc. 28, 2020)
- ↑ R. Kumar, A. Hazan, A. Basu, N. Zalcman, H. Matzner, et A. Priel, « Tyrosine Residue in the TRPV1 Vanilloid Binding Pocket Regulates Deactivation Kinetics », J. Biol. Chem., vol. 291, no 26, p. 13855‑13863, juin 2016, doi: 10.1074/jbc.M116.726372.
- ↑ G. Smutzer et R. K. Devassy, « Integrating TRPV1 Receptor Function with Capsaicin Psychophysics », Advances in Pharmacological Sciences, janv. 14, 2016.
- ↑ « Structure of the TRPV1 ion channel determined by electron cryo-microscopy | Nature ». https://www.nature.com/articles/nature12822#Fig3 (consulté le déc. 28, 2020)
- ↑ X. Yao, H.-Y. Kwan, et Y. Huang, « Regulation of TRP Channels by Phosphorylation », Neurosignals, vol. 14, no 6, p. 273‑280, 2005, doi: 10.1159/000093042
- ↑ F. Yang et J. Zheng, « Understand spiciness: mechanism of TRPV1 channel activation by capsaicin », Protein Cell, vol. 8, no 3, p. 169‑177, mars 2017, doi: 10.1007/s13238-016-0353-7.
- ↑ F. Yang et al., « Structural mechanism underlying capsaicin binding and activation of the TRPV1 ion channel », Nat. Chem. Biol., vol. 11, no 7, Art. no 7, juill. 2015, doi: 10.1038/nchembio.1835.
- ↑ G. Smutzer et R. K. Devassy, « Integrating TRPV1 Receptor Function with Capsaicin Psychophysics », Advances in Pharmacological Sciences, janv. 14, 2016.
- ↑ F. Yang et al., « The conformational wave in capsaicin activation of transient receptor potential vanilloid 1 ion channel », Nat. Commun., vol. 9, no 1, Art. no 1, juill. 2018, doi: 10.1038/s41467-018-05339-6.
- ↑ « TRPV1 », Wikipédia. sept. 09, 2020, Consulté le: déc. 28, 2020. [En ligne]. Disponible sur: https://fr.wikipedia.org/w/index.php?title=TRPV1&oldid=174570512
- ↑ K. Elokely et al., « Understanding TRPV1 activation by ligands: Insights from the binding modes of capsaicin and resiniferatoxin », Proc. Natl. Acad. Sci., vol. 113, no 2, p. E137‑E145, janv. 2016, doi:10.1073/pnas.1517288113.
- ↑ K. W. Ho, N. J. Ward, et D. J. Calkins, « TRPV1: a stress response protein in the central nervous system », Am. J. Neurodegener. Dis., vol. 1, no 1, p. 1‑14, avr. 2012.
- ↑ G. Smutzer et R. K. Devassy, « Integrating TRPV1 Receptor Function with Capsaicin Psychophysics », Advances in Pharmacological Sciences, janv. 14, 2016.
- ↑ K. W. Ho, N. J. Ward, et D. J. Calkins, « TRPV1: a stress response protein in the central nervous system », Am. J. Neurodegener. Dis., vol. 1, no 1, p. 1‑14, avr. 2012.
- ↑ G. Bhave et al., « Protein kinase C phosphorylation sensitizes but does not activate the capsaicin receptor transient receptor potential vanilloid 1 (TRPV1) », Proc. Natl. Acad. Sci., vol. 100, no 21, p. 12480‑12485, oct. 2003, doi: 10.1073/pnas.2032100100.
- ↑ A. Danigo, L. Magy, et C. Demiot, « TRPV1 dans les neuropathies douloureuses - Des modèles animaux aux perspectives thérapeutiques », médecine/sciences, vol. 29, no 6‑7, Art. no 6‑7, juin 2013, doi: 10.1051/medsci/2013296012.
- ↑ A. Danigo, L. Magy, et C. Demiot, « TRPV1 dans les neuropathies douloureuses - Des modèles animaux aux perspectives thérapeutiques », médecine/sciences, vol. 29, no 6‑7, Art. no 6‑7, juin 2013, doi: 10.1051/medsci/2013296012.