Sandbox Reserved 1652
From Proteopedia
(Difference between revisions)
Line 7: | Line 7: | ||
[https://en.wikipedia.org/wiki/TRPV1 TRPV1] (Vanilloid Transient Receptor Potential Type 1) is a non-selective ion channel which, in response to a stimulus, induces an incoming current of cations, primarily calcium and sodium, which causes depolarization of the cell. It is part of the [https://en.wikipedia.org/wiki/Transient_receptor_potential_channel TRP] (Transient Receptor Potential) superfamily and is the first in a subfamily of vanilloid-sensitive TRP channels / channels: TRPVs. | [https://en.wikipedia.org/wiki/TRPV1 TRPV1] (Vanilloid Transient Receptor Potential Type 1) is a non-selective ion channel which, in response to a stimulus, induces an incoming current of cations, primarily calcium and sodium, which causes depolarization of the cell. It is part of the [https://en.wikipedia.org/wiki/Transient_receptor_potential_channel TRP] (Transient Receptor Potential) superfamily and is the first in a subfamily of vanilloid-sensitive TRP channels / channels: TRPVs. | ||
- | This receptor is expressed by sensory neurons of the dorsal and trigeminal spinal ganglia.TRPV1 is implicated in [https://en.wikipedia.org/wiki/Nociception nociception], its activation by heat or by chemical substances leads to a painful sensation.<ref | + | This receptor is expressed by sensory neurons of the dorsal and trigeminal spinal ganglia.TRPV1 is implicated in [https://en.wikipedia.org/wiki/Nociception nociception], its activation by heat or by chemical substances leads to a painful sensation.<ref name="TRPV1">Wikipedia contributors. (2020b, décembre 21). TRPV1. Wikipedia. https://en.wikipedia.org/wiki/TRPV1 (Consulté le: déc. 28, 2020). [En ligne].</ref> |
== Structure of TRPV1 == | == Structure of TRPV1 == | ||
Line 17: | Line 17: | ||
The N-terminal region has 6 repeats of [https://en.wikipedia.org/wiki/Ankyrin ankyrin].<ref>« Structure of the TRPV1 ion channel determined by electron cryo-microscopy | Nature ».https://www.nature.com/articles/nature12822#Fig3 (consulté le déc. 28, 2020)</ref><ref>G. Smutzer et R. K. Devassy, « Integrating TRPV1 Receptor Function with Capsaicin Psychophysics », Advances in Pharmacological Sciences, janv. 14, 2016</ref> | The N-terminal region has 6 repeats of [https://en.wikipedia.org/wiki/Ankyrin ankyrin].<ref>« Structure of the TRPV1 ion channel determined by electron cryo-microscopy | Nature ».https://www.nature.com/articles/nature12822#Fig3 (consulté le déc. 28, 2020)</ref><ref>G. Smutzer et R. K. Devassy, « Integrating TRPV1 Receptor Function with Capsaicin Psychophysics », Advances in Pharmacological Sciences, janv. 14, 2016</ref> | ||
- | The transmembrane region is composed of '''six transmembrane a helices''' (S1-S6). S1,S2 and S3 helices contain aromatic side chain (S1 : Y441,Y444,Y555 S2: F488 S3 : F516).<ref>« Structure of the TRPV1 ion channel determined by electron cryo-microscopy | Nature ». https://www.nature.com/articles/nature12822#Fig3 (consulté le déc. 28, 2020)</ref>. A small hydrophobic domain beetween S5 and S6 with a re-entrant loop constitutes the pore allowing the passage of ions through the TRPV1 receptor.<ref | + | The transmembrane region is composed of '''six transmembrane a helices''' (S1-S6). S1,S2 and S3 helices contain aromatic side chain (S1 : Y441,Y444,Y555 S2: F488 S3 : F516).<ref>« Structure of the TRPV1 ion channel determined by electron cryo-microscopy | Nature ». https://www.nature.com/articles/nature12822#Fig3 (consulté le déc. 28, 2020)</ref>. A small hydrophobic domain beetween S5 and S6 with a re-entrant loop constitutes the pore allowing the passage of ions through the TRPV1 receptor.<ref name="TRPV1"/> |
'''Threonin''' residu (T550) and '''tyrosin''' residu (Y511) located on the fifth and the third transmembrane helices are very conserved. Threonin 550 and tyrosin 511 are implicated in TRPV1 activation by [https://en.wikipedia.org/wiki/Vanilloids vanilloids] and in pain sensation.<ref>R. Kumar, A. Hazan, A. Basu, N. Zalcman, H. Matzner, et A. Priel, « Tyrosine Residue in the TRPV1 Vanilloid Binding Pocket Regulates Deactivation Kinetics », J. Biol. Chem., vol. 291, no 26, p. 13855‑13863, juin 2016, doi: 10.1074/jbc.M116.726372.</ref> | '''Threonin''' residu (T550) and '''tyrosin''' residu (Y511) located on the fifth and the third transmembrane helices are very conserved. Threonin 550 and tyrosin 511 are implicated in TRPV1 activation by [https://en.wikipedia.org/wiki/Vanilloids vanilloids] and in pain sensation.<ref>R. Kumar, A. Hazan, A. Basu, N. Zalcman, H. Matzner, et A. Priel, « Tyrosine Residue in the TRPV1 Vanilloid Binding Pocket Regulates Deactivation Kinetics », J. Biol. Chem., vol. 291, no 26, p. 13855‑13863, juin 2016, doi: 10.1074/jbc.M116.726372.</ref> | ||
Line 38: | Line 38: | ||
The capsaicin cycle binds via hydrogen bounds to amino acids on the S3 helix (Y511, S513), on the S4-S5 linker (E571) and on the S6 helix (T671). The amid group of capsaicin binds the S4 helix (T551).<ref>G. Smutzer et R. K. Devassy, « Integrating TRPV1 Receptor Function with Capsaicin Psychophysics », Advances in Pharmacological Sciences, janv. 14, 2016.</ref> | The capsaicin cycle binds via hydrogen bounds to amino acids on the S3 helix (Y511, S513), on the S4-S5 linker (E571) and on the S6 helix (T671). The amid group of capsaicin binds the S4 helix (T551).<ref>G. Smutzer et R. K. Devassy, « Integrating TRPV1 Receptor Function with Capsaicin Psychophysics », Advances in Pharmacological Sciences, janv. 14, 2016.</ref> | ||
- | Capsaicin maintains TRPV1 in an open state by «pull and contact» interactions. A conformational change wave spread over the whole pore.<ref>F. Yang et al., « The conformational wave in capsaicin activation of transient receptor potential vanilloid 1 ion channel », Nat. Commun., vol. 9, no 1, Art. no 1, juill. 2018, doi: 10.1038/s41467-018-05339-6.</ref>. This leads to the massive enter of Ca2+ and Na+ in the cytoplasm of the nerve fiber and to the depolarization of the nerve fiber. When depolarization reach a theshold value it triggers the generation of an [https://en.wikipedia.org/wiki/Action_potential action potential] causing a painful sensation.<ref | + | Capsaicin maintains TRPV1 in an open state by «pull and contact» interactions. A conformational change wave spread over the whole pore.<ref>F. Yang et al., « The conformational wave in capsaicin activation of transient receptor potential vanilloid 1 ion channel », Nat. Commun., vol. 9, no 1, Art. no 1, juill. 2018, doi: 10.1038/s41467-018-05339-6.</ref>. This leads to the massive enter of Ca2+ and Na+ in the cytoplasm of the nerve fiber and to the depolarization of the nerve fiber. When depolarization reach a theshold value it triggers the generation of an [https://en.wikipedia.org/wiki/Action_potential action potential] causing a painful sensation.<ref name="TRPV1"/> |
====Resiniferatoxin (RTX)==== | ====Resiniferatoxin (RTX)==== |
Revision as of 21:25, 7 January 2021
This Sandbox is Reserved from 26/11/2020, through 26/11/2021 for use in the course "Structural Biology" taught by Bruno Kieffer at the University of Strasbourg, ESBS. This reservation includes Sandbox Reserved 1643 through Sandbox Reserved 1664. |
To get started:
More help: Help:Editing |
The Transient Receptor Potential cation channel subfamily V member 1 TRPV1
|
References
- ↑ 1.0 1.1 1.2 Wikipedia contributors. (2020b, décembre 21). TRPV1. Wikipedia. https://en.wikipedia.org/wiki/TRPV1 (Consulté le: déc. 28, 2020). [En ligne].
- ↑ « Structure of the TRPV1 ion channel determined by electron cryo-microscopy | Nature ». https://www.nature.com/articles/nature12822#Fig3 (consulté le déc. 28, 2020)
- ↑ T. Rosenbaum et S. A. Simon, « TRPV1 Receptors and Signal Transduction », in TRP Ion Channel Function in Sensory Transduction and Cellular Signaling Cascades, W. B. Liedtke et S. Heller, Éd. Boca Raton (FL): CRC Press/Taylor & Francis, 2007
- ↑ « Structure of the TRPV1 ion channel determined by electron cryo-microscopy | Nature ». https://www.nature.com/articles/nature12822#Fig3 (consulté le déc. 28, 2020)
- ↑ « Structure of the TRPV1 ion channel determined by electron cryo-microscopy | Nature ».https://www.nature.com/articles/nature12822#Fig3 (consulté le déc. 28, 2020)
- ↑ G. Smutzer et R. K. Devassy, « Integrating TRPV1 Receptor Function with Capsaicin Psychophysics », Advances in Pharmacological Sciences, janv. 14, 2016
- ↑ « Structure of the TRPV1 ion channel determined by electron cryo-microscopy | Nature ». https://www.nature.com/articles/nature12822#Fig3 (consulté le déc. 28, 2020)
- ↑ R. Kumar, A. Hazan, A. Basu, N. Zalcman, H. Matzner, et A. Priel, « Tyrosine Residue in the TRPV1 Vanilloid Binding Pocket Regulates Deactivation Kinetics », J. Biol. Chem., vol. 291, no 26, p. 13855‑13863, juin 2016, doi: 10.1074/jbc.M116.726372.
- ↑ G. Smutzer et R. K. Devassy, « Integrating TRPV1 Receptor Function with Capsaicin Psychophysics », Advances in Pharmacological Sciences, janv. 14, 2016.
- ↑ « Structure of the TRPV1 ion channel determined by electron cryo-microscopy | Nature ». https://www.nature.com/articles/nature12822#Fig3 (consulté le déc. 28, 2020)
- ↑ X. Yao, H.-Y. Kwan, et Y. Huang, « Regulation of TRP Channels by Phosphorylation », Neurosignals, vol. 14, no 6, p. 273‑280, 2005, doi: 10.1159/000093042
- ↑ F. Yang et J. Zheng, « Understand spiciness: mechanism of TRPV1 channel activation by capsaicin », Protein Cell, vol. 8, no 3, p. 169‑177, mars 2017, doi: 10.1007/s13238-016-0353-7.
- ↑ F. Yang et al., « Structural mechanism underlying capsaicin binding and activation of the TRPV1 ion channel », Nat. Chem. Biol., vol. 11, no 7, Art. no 7, juill. 2015, doi: 10.1038/nchembio.1835.
- ↑ G. Smutzer et R. K. Devassy, « Integrating TRPV1 Receptor Function with Capsaicin Psychophysics », Advances in Pharmacological Sciences, janv. 14, 2016.
- ↑ F. Yang et al., « The conformational wave in capsaicin activation of transient receptor potential vanilloid 1 ion channel », Nat. Commun., vol. 9, no 1, Art. no 1, juill. 2018, doi: 10.1038/s41467-018-05339-6.
- ↑ K. Elokely et al., « Understanding TRPV1 activation by ligands: Insights from the binding modes of capsaicin and resiniferatoxin », Proc. Natl. Acad. Sci., vol. 113, no 2, p. E137‑E145, janv. 2016, doi:10.1073/pnas.1517288113.
- ↑ K. W. Ho, N. J. Ward, et D. J. Calkins, « TRPV1: a stress response protein in the central nervous system », Am. J. Neurodegener. Dis., vol. 1, no 1, p. 1‑14, avr. 2012.
- ↑ G. Smutzer et R. K. Devassy, « Integrating TRPV1 Receptor Function with Capsaicin Psychophysics », Advances in Pharmacological Sciences, janv. 14, 2016.
- ↑ K. W. Ho, N. J. Ward, et D. J. Calkins, « TRPV1: a stress response protein in the central nervous system », Am. J. Neurodegener. Dis., vol. 1, no 1, p. 1‑14, avr. 2012.
- ↑ G. Bhave et al., « Protein kinase C phosphorylation sensitizes but does not activate the capsaicin receptor transient receptor potential vanilloid 1 (TRPV1) », Proc. Natl. Acad. Sci., vol. 100, no 21, p. 12480‑12485, oct. 2003, doi: 10.1073/pnas.2032100100.
- ↑ A. Danigo, L. Magy, et C. Demiot, « TRPV1 dans les neuropathies douloureuses - Des modèles animaux aux perspectives thérapeutiques », médecine/sciences, vol. 29, no 6‑7, Art. no 6‑7, juin 2013, doi: 10.1051/medsci/2013296012.
- ↑ A. Danigo, L. Magy, et C. Demiot, « TRPV1 dans les neuropathies douloureuses - Des modèles animaux aux perspectives thérapeutiques », médecine/sciences, vol. 29, no 6‑7, Art. no 6‑7, juin 2013, doi: 10.1051/medsci/2013296012.