Sandbox Reserved 1653

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 20: Line 20:
Piezo1 is a sensor of mechanical forces in [https://en.wikipedia.org/wiki/Endothelium endothelial], urothelial and renal epithelial cells. For instance, Piezo 1 is involved is shear stress sensing in blood vessel endothelial cells and is implicated in the development and physiological functions of the circulatory system, including the proper formation of blood, vessels, regulation of vascular tone and remodelling of small resistance arteries upon [https://en.wikipedia.org/wiki/Hypertension hypertension]. It’s also involved in red blood cell volume homeostasis. <ref name="Cell Press"/>
Piezo1 is a sensor of mechanical forces in [https://en.wikipedia.org/wiki/Endothelium endothelial], urothelial and renal epithelial cells. For instance, Piezo 1 is involved is shear stress sensing in blood vessel endothelial cells and is implicated in the development and physiological functions of the circulatory system, including the proper formation of blood, vessels, regulation of vascular tone and remodelling of small resistance arteries upon [https://en.wikipedia.org/wiki/Hypertension hypertension]. It’s also involved in red blood cell volume homeostasis. <ref name="Cell Press"/>
Piezo channel mediated cationic non selective currents. Indeed, monovalent (Na+, K+) and divalent (Ca2+, Mg2+) can flow through.
Piezo channel mediated cationic non selective currents. Indeed, monovalent (Na+, K+) and divalent (Ca2+, Mg2+) can flow through.
-
However, Piezo 1 is implicated in excitatory channels because cation can enter into the cell and lead to membrane [https://en.wikipedia.org/wiki/Depolarization depolarisation] or [https://en.wikipedia.org/wiki/Calcium_signaling calcium dependent signalling pathway] (if Ca2+ enter).
+
However, Piezo 1 is implicated in excitatory channels because cation can enter into the cell and lead to membrane [https://en.wikipedia.org/wiki/Depolarization depolarisation] or [https://en.wikipedia.org/wiki/Calcium_signaling calcium dependent signalling pathway] (if Ca2+ enter). <ref name="Adenosine"> DOI 10.3389/fphar.2019.01304 </ref>
When calcium-dependent signalling pathway is activated, NO can be released by endothelial cells and lead to vasodilation but also, some channels can also
When calcium-dependent signalling pathway is activated, NO can be released by endothelial cells and lead to vasodilation but also, some channels can also
-
be activated in red blood cells.
+
be activated in red blood cells. <ref name="Adenosine"/ref>
Piezo has a wide variety of functions, but we will focus on the vascularisation.
Piezo has a wide variety of functions, but we will focus on the vascularisation.

Revision as of 09:40, 10 January 2021

Piezo 1

Drag the structure with the mouse to rotate

References

  1. 1.0 1.1 1.2 Zhao Q, Wu K, Geng J, Chi S, Wang Y, Zhi P, Zhang M, Xiao B. Ion Permeation and Mechanotransduction Mechanisms of Mechanosensitive Piezo Channels. Neuron. 2016 Mar 16;89(6):1248-1263. doi: 10.1016/j.neuron.2016.01.046. Epub 2016, Feb 25. PMID:26924440 doi:http://dx.doi.org/10.1016/j.neuron.2016.01.046
  2. 2.0 2.1 Parpaite T, Coste B. Piezo channels. Curr Biol. 2017 Apr 3;27(7):R250-R252. doi: 10.1016/j.cub.2017.01.048. PMID:28376327 doi:http://dx.doi.org/10.1016/j.cub.2017.01.048
  3. 3.0 3.1 3.2 Wei L, Mousawi F, Li D, Roger S, Li J, Yang X, Jiang LH. Adenosine Triphosphate Release and P2 Receptor Signaling in Piezo1 Channel-Dependent Mechanoregulation. Front Pharmacol. 2019 Nov 6;10:1304. doi: 10.3389/fphar.2019.01304. eCollection, 2019. PMID:31780935 doi:http://dx.doi.org/10.3389/fphar.2019.01304
  4. Lin YC, Guo YR, Miyagi A, Levring J, MacKinnon R, Scheuring S. Force-induced conformational changes in PIEZO1. Nature. 2019 Sep;573(7773):230-234. doi: 10.1038/s41586-019-1499-2. Epub 2019 Aug, 21. PMID:31435018 doi:http://dx.doi.org/10.1038/s41586-019-1499-2
  5. Piezo has a wide variety of functions, but we will focus on the vascularisation.

    Vascularisation: detection of shearing forces

    Piezo1 plays a critical role in the formation of blood vessels. Indeed, fluid flow induces a frictional force, and this shear stress activates the piezo1 channels located in endothelial cells’ membranes. It results in an alignment process, leading to healthy vascular development. The entry of Ca2+ is the key to the process. The shear stress-enhanced Ca2+ entry through piezo1 channels is coupled with calpain activation. From this association steams proteolytic cleavage of cytoskeletal actin and focal adhesion proteins, which induces endothelial cell organisation and alignment. A deficit in Piezo1’s expression can lead to a cobblestone-like appearance of endothelial cells’ organisation, instead of its standard linear appearance. The subcellular localisation of piezo1 is also determining. In static conditions, its repartition is even on the membrane, but when a mechanical stimulus arises, piezo1 accumulates at the cell’s apical. This process characterises endothelial cells’ alignment toward frictional force. However, piezo1 is also able to drive endothelial cell migration without shear stress, through endothelial oxide synthase, a protein with major roles in vascular biology. <ref> DOI 10.1038/nature13701</li> <li id="cite_note-Piezo_Senses_Tension-5">↑ <sup>[[#cite_ref-Piezo_Senses_Tension_5-0|6.0]]</sup> <sup>[[#cite_ref-Piezo_Senses_Tension_5-1|6.1]]</sup> <sup>[[#cite_ref-Piezo_Senses_Tension_5-2|6.2]]</sup> <sup>[[#cite_ref-Piezo_Senses_Tension_5-3|6.3]]</sup> Liang X, Howard J. Structural Biology: Piezo Senses Tension through Curvature. Curr Biol. 2018 Apr 23;28(8):R357-R359. doi: 10.1016/j.cub.2018.02.078. PMID:[http://www.ncbi.nlm.nih.gov/pubmed/29689211 29689211] doi:[http://dx.doi.org/10.1016/j.cub.2018.02.078 http://dx.doi.org/10.1016/j.cub.2018.02.078]</li> <li id="cite_note-nv_article-6">[[#cite_ref-nv_article_6-0|↑]] Guo YR, MacKinnon R. Structure-based membrane dome mechanism for Piezo mechanosensitivity. Elife. 2017 Dec 12;6. pii: 33660. doi: 10.7554/eLife.33660. PMID:[http://www.ncbi.nlm.nih.gov/pubmed/29231809 29231809] doi:[http://dx.doi.org/10.7554/eLife.33660 http://dx.doi.org/10.7554/eLife.33660]</li> <li id="cite_note-Fanny-7">[[#cite_ref-Fanny_7-0|↑]] Lin YC, Guo YR, Miyagi A, Levring J, MacKinnon R, Scheuring S. Force-induced conformational changes in PIEZO1. Nature. 2019 Sep;573(7773):230-234. doi: 10.1038/s41586-019-1499-2. Epub 2019 Aug, 21. PMID:[http://www.ncbi.nlm.nih.gov/pubmed/31435018 31435018] doi:[http://dx.doi.org/10.1038/s41586-019-1499-2 http://dx.doi.org/10.1038/s41586-019-1499-2]</li> <li id="cite_note-Alexandra-8">↑ <sup>[[#cite_ref-Alexandra_8-0|9.0]]</sup> <sup>[[#cite_ref-Alexandra_8-1|9.1]]</sup> Zhou, Z. (2019). Structural Analysis of Piezo1 Ion Channel Reveals the Relationship between Amino Acid Sequence Mutations and Human Diseases. 139–155. DOI 10.4236/jbm.2019.712012 </li> <li id="cite_note-Article_six-9">[[#cite_ref-Article_six_9-0|↑]] Zhao Q, Zhou H, Chi S, Wang Y, Wang J, Geng J, Wu K, Liu W, Zhang T, Dong MQ, Wang J, Li X, Xiao B. Structure and mechanogating mechanism of the Piezo1 channel. Nature. 2018 Feb 22;554(7693):487-492. doi: 10.1038/nature25743. Epub 2018 Jan, 22. PMID:[http://www.ncbi.nlm.nih.gov/pubmed/29469092 29469092] doi:[http://dx.doi.org/10.1038/nature25743 http://dx.doi.org/10.1038/nature25743]</li> <li id="cite_note-10">[[#cite_ref-10|↑]] Guo YR, MacKinnon R. Structure-based membrane dome mechanism for Piezo mechanosensitivity. Elife. 2017 Dec 12;6. pii: 33660. doi: 10.7554/eLife.33660. PMID:[http://www.ncbi.nlm.nih.gov/pubmed/29231809 29231809] doi:[http://dx.doi.org/10.7554/eLife.33660 http://dx.doi.org/10.7554/eLife.33660]</li> <li id="cite_note-Architecture-11">[[#cite_ref-Architecture_11-0|↑]] Ge J, Li W, Zhao Q, Li N, Chen M, Zhi P, Li R, Gao N, Xiao B, Yang M. Architecture of the mammalian mechanosensitive Piezo1 channel. Nature. 2015 Nov 5;527(7576):64-9. doi: 10.1038/nature15247. Epub 2015 Sep 21. PMID:[http://www.ncbi.nlm.nih.gov/pubmed/26390154 26390154] doi:[http://dx.doi.org/10.1038/nature15247 http://dx.doi.org/10.1038/nature15247]</li> <li id="cite_note-ion_channel-12">↑ <sup>[[#cite_ref-ion_channel_12-0|13.0]]</sup> <sup>[[#cite_ref-ion_channel_12-1|13.1]]</sup> Saotome K, Murthy SE, Kefauver JM, Whitwam T, Patapoutian A, Ward AB. Structure of the mechanically activated ion channel Piezo1. Nature. 2017 Dec 20. pii: nature25453. doi: 10.1038/nature25453. PMID:[http://www.ncbi.nlm.nih.gov/pubmed/29261642 29261642] doi:[http://dx.doi.org/10.1038/nature25453 http://dx.doi.org/10.1038/nature25453]</li> <li id="cite_note-architecture-13">↑ <sup>[[#cite_ref-architecture_13-0|14.0]]</sup> <sup>[[#cite_ref-architecture_13-1|14.1]]</sup> Ge J, Li W, Zhao Q, Li N, Chen M, Zhi P, Li R, Gao N, Xiao B, Yang M. Architecture of the mammalian mechanosensitive Piezo1 channel. Nature. 2015 Nov 5;527(7576):64-9. doi: 10.1038/nature15247. Epub 2015 Sep 21. PMID:[http://www.ncbi.nlm.nih.gov/pubmed/26390154 26390154] doi:[http://dx.doi.org/10.1038/nature15247 http://dx.doi.org/10.1038/nature15247]</li> <li id="cite_note-mechanogating-14">↑ <sup>[[#cite_ref-mechanogating_14-0|15.0]]</sup> <sup>[[#cite_ref-mechanogating_14-1|15.1]]</sup> <sup>[[#cite_ref-mechanogating_14-2|15.2]]</sup> <sup>[[#cite_ref-mechanogating_14-3|15.3]]</sup> Zhao Q, Zhou H, Chi S, Wang Y, Wang J, Geng J, Wu K, Liu W, Zhang T, Dong MQ, Wang J, Li X, Xiao B. Structure and mechanogating mechanism of the Piezo1 channel. Nature. 2018 Feb 22;554(7693):487-492. doi: 10.1038/nature25743. Epub 2018 Jan, 22. PMID:[http://www.ncbi.nlm.nih.gov/pubmed/29469092 29469092] doi:[http://dx.doi.org/10.1038/nature25743 http://dx.doi.org/10.1038/nature25743]</li> <li id="cite_note-structural_analysis-15">[[#cite_ref-structural_analysis_15-0|↑]] doi: https://dx.doi.org/10.4236/jbm.2019.712012</li> <li id="cite_note-Dehydrated-16">↑ <sup>[[#cite_ref-Dehydrated_16-0|17.0]]</sup> <sup>[[#cite_ref-Dehydrated_16-1|17.1]]</sup> Albuisson J, Murthy SE, Bandell M, Coste B, Louis-Dit-Picard H, Mathur J, Feneant-Thibault M, Tertian G, de Jaureguiberry JP, Syfuss PY, Cahalan S, Garcon L, Toutain F, Simon Rohrlich P, Delaunay J, Picard V, Jeunemaitre X, Patapoutian A. Dehydrated hereditary stomatocytosis linked to gain-of-function mutations in mechanically activated PIEZO1 ion channels. Nat Commun. 2013;4:1884. doi: 10.1038/ncomms2899. PMID:[http://www.ncbi.nlm.nih.gov/pubmed/23695678 23695678] doi:[http://dx.doi.org/10.1038/ncomms2899 http://dx.doi.org/10.1038/ncomms2899]</li>

    <li id="cite_note-Multiple_clinical-17">[[#cite_ref-Multiple_clinical_17-0|↑]] Andolfo I, Alper SL, De Franceschi L, Auriemma C, Russo R, De Falco L, Vallefuoco F, Esposito MR, Vandorpe DH, Shmukler BE, Narayan R, Montanaro D, D'Armiento M, Vetro A, Limongelli I, Zuffardi O, Glader BE, Schrier SL, Brugnara C, Stewart GW, Delaunay J, Iolascon A. Multiple clinical forms of dehydrated hereditary stomatocytosis arise from mutations in PIEZO1. Blood. 2013 May 9;121(19):3925-35, S1-12. doi: 10.1182/blood-2013-02-482489. Epub, 2013 Mar 11. PMID:[http://www.ncbi.nlm.nih.gov/pubmed/23479567 23479567] doi:[http://dx.doi.org/10.1182/blood-2013-02-482489 http://dx.doi.org/10.1182/blood-2013-02-482489]</li></ol></ref>
Personal tools