Immune receptors
From Proteopedia
(Difference between revisions)
| Line 19: | Line 19: | ||
====Type I cytokine receptors==== | ====Type I cytokine receptors==== | ||
*[[Erythropoietin receptor]] | *[[Erythropoietin receptor]] | ||
| - | <scene name='70/705725/Cv/3'>Human erythropoietin receptor with erythropoietin</scene> (PDB code [[1cn4]]). | + | The <scene name='12/128258/Eporeceptor/3'>EPO receptor</scene> of the blood marrow is part of the hematipoietic cytokine family. This receptor has a single transmembrane domain, that forms a homodimer complex until it is activated by the binding of EPO. This receptor is 484 amino acids long and weigh 52.6 kDa. Once the homodimer is formed after the binding, autophosphorlation of the Jak2 kinases, which activates other cellular processes. This transmembrane receptor has two extracellular domains. This receptor has two disulfide bonds that are formed from 4 cystine residues, <scene name='58/583377/Eporeceptord1d2cyslabel/1'>Cys67 and Cys83 and Cys28 and Cys38</scene>. The intracellular domain of this receptor does not possess any enzymatic activity like other receptors. When EPO comes in contact with the extracellular domains form a ligand bond. The extracellular sinding site 1 and Binding site 2 are composed of <scene name='58/583377/Eporeceptord1d2/1'>D1 and D2</scene>. When EPO binds, all loops on D1 and D2 of binding site one form a bind with EPO. However loop 4 of D1 on binding site 2 does not participate in the binding of EPO <ref>PMID: 9774108</ref>. After the biniding of EPO, 8 tyrosine residues are phosphoralated which activates the <scene name='58/583377/Jak2/2'>Jak2 kinase</scene>. This kinase helps regulate the transcription of different genes and expression of other proteins. |
| + | |||
| + | <scene name='70/705725/Cv/3'>Human erythropoietin receptor with erythropoietin</scene> (PDB code [[1cn4]]).<ref>PMID:9774108</ref> | ||
| + | |||
*[[Prolactin receptor]] | *[[Prolactin receptor]] | ||
<scene name='74/749401/Cv/5'>Human prolactin receptor complex with prolactin, Na+ and Cl-</scene> (PDB code [[3mzg]]). The interaction between PRLR and prolactin is strongly pH-dependent and is critically dependent on <scene name='74/749401/Cv/6'>two histidine residues located at PRLP and on prolactin</scene><ref>PMID:20889499</ref>. Water molecules are shown as red spheres. <scene name='74/749401/Cv/7'>Na coordination site is situated between PRLR and prolactin</scene>. | <scene name='74/749401/Cv/5'>Human prolactin receptor complex with prolactin, Na+ and Cl-</scene> (PDB code [[3mzg]]). The interaction between PRLR and prolactin is strongly pH-dependent and is critically dependent on <scene name='74/749401/Cv/6'>two histidine residues located at PRLP and on prolactin</scene><ref>PMID:20889499</ref>. Water molecules are shown as red spheres. <scene name='74/749401/Cv/7'>Na coordination site is situated between PRLR and prolactin</scene>. | ||
Current revision
| |||||||||||
References
- ↑ Thomas R, Matthias T, Witte T. Leukocyte immunoglobulin-like receptors as new players in autoimmunity. Clin Rev Allergy Immunol. 2010 Apr;38(2-3):159-62. doi:, 10.1007/s12016-009-8148-8. PMID:19548123 doi:http://dx.doi.org/10.1007/s12016-009-8148-8
- ↑ Naismith JH, Devine TQ, Kohno T, Sprang SR. Structures of the extracellular domain of the type I tumor necrosis factor receptor. Structure. 1996 Nov 15;4(11):1251-62. PMID:8939750
- ↑ Zhang C, Ibrahim PN, Zhang J, Burton EA, Habets G, Zhang Y, Powell B, West BL, Matusow B, Tsang G, Shellooe R, Carias H, Nguyen H, Marimuthu A, Zhang KY, Oh A, Bremer R, Hurt CR, Artis DR, Wu G, Nespi M, Spevak W, Lin P, Nolop K, Hirth P, Tesch GH, Bollag G. Design and pharmacology of a highly specific dual FMS and KIT kinase inhibitor. Proc Natl Acad Sci U S A. 2013 Mar 14. PMID:23493555 doi:http://dx.doi.org/10.1073/pnas.1219457110
- ↑ Felix J, De Munck S, Verstraete K, Meuris L, Callewaert N, Elegheert J, Savvides SN. Structure and Assembly Mechanism of the Signaling Complex Mediated by Human CSF-1. Structure. 2015 Jul 21. pii: S0969-2126(15)00272-5. doi:, 10.1016/j.str.2015.06.019. PMID:26235028 doi:http://dx.doi.org/10.1016/j.str.2015.06.019
- ↑ Syed RS, Reid SW, Li C, Cheetham JC, Aoki KH, Liu B, Zhan H, Osslund TD, Chirino AJ, Zhang J, Finer-Moore J, Elliott S, Sitney K, Katz BA, Matthews DJ, Wendoloski JJ, Egrie J, Stroud RM. Efficiency of signalling through cytokine receptors depends critically on receptor orientation. Nature. 1998 Oct 1;395(6701):511-6. PMID:9774108 doi:http://dx.doi.org/10.1038/26773
- ↑ Syed RS, Reid SW, Li C, Cheetham JC, Aoki KH, Liu B, Zhan H, Osslund TD, Chirino AJ, Zhang J, Finer-Moore J, Elliott S, Sitney K, Katz BA, Matthews DJ, Wendoloski JJ, Egrie J, Stroud RM. Efficiency of signalling through cytokine receptors depends critically on receptor orientation. Nature. 1998 Oct 1;395(6701):511-6. PMID:9774108 doi:http://dx.doi.org/10.1038/26773
- ↑ Kulkarni MV, Tettamanzi MC, Murphy JW, Keeler C, Myszka DG, Chayen NE, Lolis EJ, Hodsdon ME. Two independent histidines, one in human prolactin and one in its receptor, are critical for pH dependent receptor recognition and activation. J Biol Chem. 2010 Sep 30. PMID:20889499 doi:10.1074/jbc.M110.172072
- ↑ Thomas C, Moraga I, Levin D, Krutzik PO, Podoplelova Y, Trejo A, Lee C, Yarden G, Vleck SE, Glenn JS, Nolan GP, Piehler J, Schreiber G, Garcia KC. Structural Linkage between Ligand Discrimination and Receptor Activation by Type I Interferons. Cell. 2011 Aug 19;146(4):621-32. PMID:21854986 doi:10.1016/j.cell.2011.06.048
- ↑ Zahradnik J, Kolarova L, Peleg Y, Kolenko P, Svidenska S, Charnavets T, Unger T, Sussman JL, Schneider B. Flexible regions govern promiscuous binding of IL-24 to receptors IL-20R1 and IL-22R1. FEBS J. 2019 Jun 1. doi: 10.1111/febs.14945. PMID:31152679 doi:http://dx.doi.org/10.1111/febs.14945
- ↑ Logsdon NJ, Deshpande A, Harris BD, Rajashankar KR, Walter MR. Structural basis for receptor sharing and activation by interleukin-20 receptor-2 (IL-20R2) binding cytokines. Proc Natl Acad Sci U S A. 2012 Jul 31;109(31):12704-9. Epub 2012 Jul 16. PMID:22802649 doi:10.1073/pnas.1117551109
- ↑ 11.0 11.1 Lubkowski J, Sonmez C, Smirnov SV, Anishkin A, Kotenko SV, Wlodawer A. Crystal Structure of the Labile Complex of IL-24 with the Extracellular Domains of IL-22R1 and IL-20R2. J Immunol. 2018 Aug 15. pii: jimmunol.1800726. doi: 10.4049/jimmunol.1800726. PMID:30111632 doi:http://dx.doi.org/10.4049/jimmunol.1800726
- ↑ Rutz S, Wang X, Ouyang W. The IL-20 subfamily of cytokines--from host defence to tissue homeostasis. Nat Rev Immunol. 2014 Dec;14(12):783-95. doi: 10.1038/nri3766. PMID:25421700 doi:http://dx.doi.org/10.1038/nri3766
- ↑ Kumari S, Bonnet MC, Ulvmar MH, Wolk K, Karagianni N, Witte E, Uthoff-Hachenberg C, Renauld JC, Kollias G, Toftgard R, Sabat R, Pasparakis M, Haase I. Tumor necrosis factor receptor signaling in keratinocytes triggers interleukin-24-dependent psoriasis-like skin inflammation in mice. Immunity. 2013 Nov 14;39(5):899-911. doi: 10.1016/j.immuni.2013.10.009. Epub 2013, Nov 7. PMID:24211183 doi:http://dx.doi.org/10.1016/j.immuni.2013.10.009
- ↑ Jin SH, Choi D, Chun YJ, Noh M. Keratinocyte-derived IL-24 plays a role in the positive feedback regulation of epidermal inflammation in response to environmental and endogenous toxic stressors. Toxicol Appl Pharmacol. 2014 Oct 15;280(2):199-206. doi:, 10.1016/j.taap.2014.08.019. Epub 2014 Aug 27. PMID:25168428 doi:http://dx.doi.org/10.1016/j.taap.2014.08.019
- ↑ Andoh A, Shioya M, Nishida A, Bamba S, Tsujikawa T, Kim-Mitsuyama S, Fujiyama Y. Expression of IL-24, an activator of the JAK1/STAT3/SOCS3 cascade, is enhanced in inflammatory bowel disease. J Immunol. 2009 Jul 1;183(1):687-95. doi: 10.4049/jimmunol.0804169. Epub 2009 Jun, 17. PMID:19535621 doi:http://dx.doi.org/10.4049/jimmunol.0804169
- ↑ Fonseca-Camarillo G, Furuzawa-Carballeda J, Granados J, Yamamoto-Furusho JK. Expression of interleukin (IL)-19 and IL-24 in inflammatory bowel disease patients: a cross-sectional study. Clin Exp Immunol. 2014 Jul;177(1):64-75. doi: 10.1111/cei.12285. PMID:24527982 doi:http://dx.doi.org/10.1111/cei.12285
- ↑ Ma Y, Chen H, Wang Q, Luo F, Yan J, Zhang XL. IL-24 protects against Salmonella typhimurium infection by stimulating early neutrophil Th1 cytokine production, which in turn activates CD8+ T cells. Eur J Immunol. 2009 Dec;39(12):3357-68. doi: 10.1002/eji.200939678. PMID:19830736 doi:http://dx.doi.org/10.1002/eji.200939678
