Sandbox Reserved 1692

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 5: Line 5:
== Function of your protein ==
== Function of your protein ==
-
Our enzyme, L-rhamnose- α-1,4-D-glucuronate lyase (FoRham1), derived from the fungus Fusarium oxysporum, is a helpful tool for determining the structure and function of Gum Arabic (GA) to create potential agents to degrade GA more effectively. When the substrate GA is bound to FoRham1, the nonreducing ends of the glycosidic linkages are broken, releasing Rha caps from GA.<ref>PMID:34303708</ref>. Enzymes that can react with glycosidic linkages of certain carbohydrates can be useful in determining the structure, function, and mechanism of the carbohydrates, giving scientists the tools to manipulate their physical properties for further application to understand their breakdown. Understanding the mechanism will give researchers more tools to understand how to degrade GA. Specifically, I focused on the mutant H105F, which has a PDB file of 7ESN.
+
Our enzyme, L-rhamnose- α-1,4-D-glucuronate lyase (FoRham1), derived from the fungus Fusarium oxysporum, is a helpful tool for determining the structure and function of Gum Arabic (GA) to create potential agents to degrade GA more effectively. When the substrate GA is bound to FoRham1, the nonreducing ends of the glycosidic linkages are broken, releasing Rha caps from GA. Enzymes that can react with glycosidic linkages of certain carbohydrates can be useful in determining the structure, function, and mechanism of the carbohydrates, giving scientists the tools to manipulate their physical properties for further application to understand their breakdown. Understanding the mechanism will give researchers more tools to understand how to degrade GA. Specifically, I focused on the mutant H105F, which has a PDB file of 7ESN.
Shown here is the enzyme <scene name='89/892735/Protein_view_2/3'>with bound ligand </scene> using N->C coloring.
Shown here is the enzyme <scene name='89/892735/Protein_view_2/3'>with bound ligand </scene> using N->C coloring.
== Biological relevance and broader implications ==
== Biological relevance and broader implications ==
-
Gum Arabic (GA) is a representative protein of the family of arabinogalactan proteins (AGPs) and is produced in acacia trees in response to stress conditions, such as drought or wounds. GA has a variety of applications within the industrial world, including the food, cosmetic, and pharmaceutical industries, acting specifically as an emulsion stabilizer, emulsifier, and thickener in pharmaceutical settings. However, the the detailed structure of GA has not determined because of the complex branching that occurs in the polysaccharide. Enzymes that can react with and eliminate glycosidic linkages of carbohydrates are useful for determining the structure and function of these carbohydrates, giving researchers the opportunity to modify their physical properties. To date, there are no enzymes that have successfully degraded GA. <ref>PMID:34303708</ref>.
+
Gum Arabic (GA) is a representative protein of the family of arabinogalactan proteins (AGPs) and is produced in acacia trees in response to stress conditions, such as drought or wounds. GA has a variety of applications within the industrial world, including the food, cosmetic, and pharmaceutical industries, acting specifically as an emulsion stabilizer, emulsifier, and thickener in pharmaceutical settings. However, the the detailed structure of GA has not determined because of the complex branching that occurs in the polysaccharide. Enzymes that can react with and eliminate glycosidic linkages of carbohydrates are useful for determining the structure and function of these carbohydrates, giving researchers the opportunity to modify their physical properties. To date, there are no enzymes that have successfully degraded GA.
== Important amino acids==
== Important amino acids==
Amino Acids <scene name='89/892735/Highlighting_amino_acids/2'>85, 150, 166, 170, 202, 220, 275, and 331</scene> provide important interactions for binding. The <scene name='89/892735/His85_and_his105/1'>His105 side chain forms a hydrogen bond with His85</scene> side chain, providing stabilizing assistance. <ref>PMID:34303708</ref>.
Amino Acids <scene name='89/892735/Highlighting_amino_acids/2'>85, 150, 166, 170, 202, 220, 275, and 331</scene> provide important interactions for binding. The <scene name='89/892735/His85_and_his105/1'>His105 side chain forms a hydrogen bond with His85</scene> side chain, providing stabilizing assistance. <ref>PMID:34303708</ref>.

Revision as of 00:50, 8 December 2021

This Sandbox is Reserved from 10/01/2021 through 01/01//2022 for use in Biochemistry taught by Bonnie Hall at Grand View University, Des Moines, USA. This reservation includes Sandbox Reserved 1690 through Sandbox Reserved 1699.
To get started:
  • Click the edit this page tab at the top. Save the page after each step, then edit it again.
  • show the Scene authoring tools, create a molecular scene, and save it. Copy the green link into the page.
  • Add a description of your scene. Use the buttons above the wikitext box for bold, italics, links, headlines, etc.

More help: Help:Editing

Structure and Function of FoRham1

Structure of FoRham1

Drag the structure with the mouse to rotate

References

  1. Kondo T, Kichijo M, Maruta A, Nakaya M, Takenaka S, Arakawa T, Fushinobu S, Sakamoto T. Structural and functional analysis of gum arabic l-rhamnose-alpha-1,4-d-glucuronate lyase establishes a novel polysaccharide lyase family. J Biol Chem. 2021 Jul 22:101001. doi: 10.1016/j.jbc.2021.101001. PMID:34303708 doi:http://dx.doi.org/10.1016/j.jbc.2021.101001
Personal tools