Sandbox Reserved 1726

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 22: Line 22:
<scene name='90/904331/Alkal2/2'>ALKAL2</scene> (Anaplastic Lymphoma Kinase Ligand 2) is a ligand of ALK as well as LTK located in the extracellular region. The full-length ALKAL2 (dimeric) and ALKAL2-AD (monomeric) can both induce dimerization of ALK <ref name="Reshetnyak">PMID:34819673</ref>. Structurally, ALKAL2 has a N-termical variable region and a conserved augmentor domain and tends to aggregate in the cell <ref name="Reshetnyak" />. Overexpression of ALKAL2 has been linked to high-risk [https://en.wikipedia.org/wiki/Neuroblastoma neuroblastoma] in absence of an ALK mutation <ref name="Borenas">PMID:33411331</ref> and could potentially have therapeutic opportunities.
<scene name='90/904331/Alkal2/2'>ALKAL2</scene> (Anaplastic Lymphoma Kinase Ligand 2) is a ligand of ALK as well as LTK located in the extracellular region. The full-length ALKAL2 (dimeric) and ALKAL2-AD (monomeric) can both induce dimerization of ALK <ref name="Reshetnyak">PMID:34819673</ref>. Structurally, ALKAL2 has a N-termical variable region and a conserved augmentor domain and tends to aggregate in the cell <ref name="Reshetnyak" />. Overexpression of ALKAL2 has been linked to high-risk [https://en.wikipedia.org/wiki/Neuroblastoma neuroblastoma] in absence of an ALK mutation <ref name="Borenas">PMID:33411331</ref> and could potentially have therapeutic opportunities.
==== ALKAL1 ====
==== ALKAL1 ====
-
<scene name='90/904331/Alkal1/3'>ALKAL1</scene> (Anaplastic Lymphoma Kinase Ligand 1) is a monomeric ligand of ALK, in addition to ALKAL2. Structurally, ALKAL1 and ALKAL2 contain an N-terminal variable region and a conversed C-terminal augmentor domain <ref name="Reshetnyak" />. However, in ALKAL1, this N-terminal variable region is shorter, and shares no similar sequences to ALKAL2. Nevertheless, ALKAL1 shares a 91% sequence similarity with ALKAL2. Both ligands include a three helix bundle domain in their structures, with an extended positively charged surface which is used in ligand binding <ref name="Reshetnyak" />.
+
<scene name='90/904331/Alkal1/4'>ALKAL1</scene> (Anaplastic Lymphoma Kinase Ligand 1) is a monomeric ligand of ALK, in addition to ALKAL2. Structurally, ALKAL1 and ALKAL2 contain an N-terminal variable region and a conversed C-terminal augmentor domain <ref name="Reshetnyak" />. However, in ALKAL1, this N-terminal variable region is shorter, and shares no similar sequences to ALKAL2. Nevertheless, ALKAL1 shares a 91% sequence similarity with ALKAL2. Both ligands include a three helix bundle domain in their structures, with an extended positively charged surface which is used in ligand binding <ref name="Reshetnyak" />.
=== Dimerization of Anaplastic Lymphoma Kinase ===
=== Dimerization of Anaplastic Lymphoma Kinase ===
After binding to one of its ligands, Anaplastic Lymphoma Kinase undergoes <scene name='90/904331/Alk_full_dimerization/2'>ligand-induced dimerization</scene> <ref name="Huang">PMID:30400214</ref>. The [https://en.wikipedia.org/wiki/Dimer_(chemistry) dimerization] causes trans-phosphorylation of specific [https://en.wikipedia.org/wiki/Tyrosine tyrosine] residues which in turn amplifies the signal. It has been presumed that the [https://en.wikipedia.org/wiki/Phosphorylation_cascade phosphorylation cascade] activates ALK kinase activity <ref name="Huang" />.
After binding to one of its ligands, Anaplastic Lymphoma Kinase undergoes <scene name='90/904331/Alk_full_dimerization/2'>ligand-induced dimerization</scene> <ref name="Huang">PMID:30400214</ref>. The [https://en.wikipedia.org/wiki/Dimer_(chemistry) dimerization] causes trans-phosphorylation of specific [https://en.wikipedia.org/wiki/Tyrosine tyrosine] residues which in turn amplifies the signal. It has been presumed that the [https://en.wikipedia.org/wiki/Phosphorylation_cascade phosphorylation cascade] activates ALK kinase activity <ref name="Huang" />.

Revision as of 18:50, 14 April 2022

This Sandbox is Reserved from February 28 through September 1, 2022 for use in the course CH462 Biochemistry II taught by R. Jeremy Johnson at the Butler University, Indianapolis, USA. This reservation includes Sandbox Reserved 1700 through Sandbox Reserved 1729.
To get started:
  • Click the edit this page tab at the top. Save the page after each step, then edit it again.
  • show the Scene authoring tools, create a molecular scene, and save it. Copy the green link into the page.
  • Add a description of your scene. Use the buttons above the wikitext box for bold, italics, links, headlines, etc.

More help: Help:Editing

Anaplastic Lymphoma Kinase Extracellular Region

Structure of Anaplastic Lymphoma Kinase 7N00

Drag the structure with the mouse to rotate
.

References

  1. 1.0 1.1 1.2 1.3 Huang H. Anaplastic Lymphoma Kinase (ALK) Receptor Tyrosine Kinase: A Catalytic Receptor with Many Faces. Int J Mol Sci. 2018 Nov 2;19(11). pii: ijms19113448. doi: 10.3390/ijms19113448. PMID:30400214 doi:http://dx.doi.org/10.3390/ijms19113448
  2. 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 Reshetnyak AV, Rossi P, Myasnikov AG, Sowaileh M, Mohanty J, Nourse A, Miller DJ, Lax I, Schlessinger J, Kalodimos CG. Mechanism for the activation of the anaplastic lymphoma kinase receptor. Nature. 2021 Dec;600(7887):153-157. doi: 10.1038/s41586-021-04140-8. Epub 2021, Nov 24. PMID:34819673 doi:http://dx.doi.org/10.1038/s41586-021-04140-8
  3. 3.0 3.1 Li T, Stayrook SE, Tsutsui Y, Zhang J, Wang Y, Li H, Proffitt A, Krimmer SG, Ahmed M, Belliveau O, Walker IX, Mudumbi KC, Suzuki Y, Lax I, Alvarado D, Lemmon MA, Schlessinger J, Klein DE. Structural basis for ligand reception by anaplastic lymphoma kinase. Nature. 2021 Dec;600(7887):148-152. doi: 10.1038/s41586-021-04141-7. Epub 2021, Nov 24. PMID:34819665 doi:http://dx.doi.org/10.1038/s41586-021-04141-7
  4. 4.0 4.1 4.2 4.3 Borenas M, Umapathy G, Lai WY, Lind DE, Witek B, Guan J, Mendoza-Garcia P, Masudi T, Claeys A, Chuang TP, El Wakil A, Arefin B, Fransson S, Koster J, Johansson M, Gaarder J, Van den Eynden J, Hallberg B, Palmer RH. ALK ligand ALKAL2 potentiates MYCN-driven neuroblastoma in the absence of ALK mutation. EMBO J. 2021 Feb 1;40(3):e105784. doi: 10.15252/embj.2020105784. Epub 2021 Jan 7. PMID:33411331 doi:http://dx.doi.org/10.15252/embj.2020105784
  5. 5.0 5.1 Della Corte CM, Viscardi G, Di Liello R, Fasano M, Martinelli E, Troiani T, Ciardiello F, Morgillo F. Role and targeting of anaplastic lymphoma kinase in cancer. Mol Cancer. 2018 Feb 19;17(1):30. doi: 10.1186/s12943-018-0776-2. PMID:29455642 doi:http://dx.doi.org/10.1186/s12943-018-0776-2
Personal tools