Sandbox Reserved 1719

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 9: Line 9:
The determination of the first structures of a ligand-activated GPCR was achieved by Robert J. Lefkowitz and Brian K. Kobilka which won them the 2012 Nobel Prize in Chemistry. They also successfully captured images of the first activated GPCR in a complex with a G protein. See [https://proteopedia.org/wiki/index.php/Nobel_Prizes_for_3D_Molecular_Structure Nobel Prizes for 3D Molecular Structure].
The determination of the first structures of a ligand-activated GPCR was achieved by Robert J. Lefkowitz and Brian K. Kobilka which won them the 2012 Nobel Prize in Chemistry. They also successfully captured images of the first activated GPCR in a complex with a G protein. See [https://proteopedia.org/wiki/index.php/Nobel_Prizes_for_3D_Molecular_Structure Nobel Prizes for 3D Molecular Structure].
- 
-
== G-proteins and Signaling ==
 
-
[[GTP-binding protein| G-proteins]], when paired with a GPCR, assist in signal transduction.<ref name="edward">DOI: 10.1002/pro.3526</ref><ref name="nelson">Nelson, David L. (David Lee), 1942-. (2005). Lehninger principles of biochemistry. New York :W.H. Freeman</ref> G-proteins are heterotrimeric GTPases composed of three subunits: <scene name='90/904324/Heterotrimeric_labeled/3'>α, β, and γ</scene>. The α subunit acts as the main signal mediator and contains a binding site for GDP or GTP, which acts as a biological “switch” to regulate the transmission of a signal from the activated receptor.<ref name="edward"/><ref name="nelson"/> The α subunit will dissociate and can then move in the plane of the membrane from the receptor to bind to downstream effectors to continue signal transmission and ultimately produce a cellular response.<ref name="edward"/><ref name="nelson"/>
 
- 
-
=== G<sub>q</sub> and G<sub>i</sub> Family α Subunits ===
 
-
The actions that G-proteins induce can be classified based on the sequence homology of α subunit (G<sub>α</sub>) present.<ref name="edward"/><ref name="Kamato"/> The most well-known are referred to as G<sub>i</sub>, G<sub>s</sub>, and G<sub>q</sub>. The G<sub>s</sub> and G<sub>q</sub> proteins are stimulatory, while the G<sub>i</sub> protein is inhibitory.<ref name="edward"/><ref name="Kamato"/> In addition, proteins are classified based on the signaling pathway that they regulate. For example, G<sub>q</sub> proteins are seen in a signaling pathway that relies on phospholipase C enzymes, while G<sub>s</sub> and G<sub>i</sub> proteins are regulators of adenylate cyclase.<ref name="Kamato"/> On this page, we will be focusing solely on the structures of the G<sub>q</sub> and G<sub>i</sub> proteins and their interactions with mast-cell receptors.
 
- 
-
G<sub>αq</sub> and G<sub>αi</sub> are proteins comprised of 359 amino acid residues, with varying sequences, that both contain a helical domain and a GTPase binding domain.<ref name= "Kamato">DOI: 10.3389/fcvm.2015.00014</ref> The GTPase binding domain is responsible for the hydrolysis of GTP as well as the binding of the β and γ subunits that form the trimeric protein structure. The helical domain contains six α helices, which are responsible for the binding of the G-protein to the coupled receptor.<ref name="Kamato"/>
 
- 
-
The conformations of the G-proteins vary based on their association with a particular membrane receptor due to interactions between the amino acids in the N-terminus of the α subunit and the C-terminus of the receptor.<ref name="Kamato"/>
 
== Related Enzymes ==
== Related Enzymes ==
Line 112: Line 102:
= Mechanism =
= Mechanism =
-
[[Image:Mast cell mechanism.png|500px|right|thumb|'''Figure 9.''' Cellular response of mast cell upon activation of MRGPRX2.]]
+
== G-proteins and Signaling ==
-
Binding to the extracellular N-terminus domain triggers a transmembrane conformation change of MRGPRX2, which demonstrates a less significant change when compared to other class A GPCRs due to the surface level binding of the ligand to MRGPRX2.<ref name="Can"/> Once ligand binding and the conformational change to the active state have taken place, the signal is relayed to the α-subunit of the heterotrimeric G-protein.<ref name="nelson"/> The α-subunit will then exchange a GDP for GTP to initiate the dissociation of the α, β, and γ subunits.<ref name="nelson"/> During this dissociation, the α-subunit is able to travel away from the receptor in the plane of the membrane to bind to downstream effectors to produce a cellular response.<ref name="nelson"/>
+
[[GTP-binding protein| G-proteins]], when paired with a GPCR, assist in signal transduction.<ref name="edward">DOI: 10.1002/pro.3526</ref><ref name="nelson">Nelson, David L. (David Lee), 1942-. (2005). Lehninger principles of biochemistry. New York :W.H. Freeman</ref> G-proteins are heterotrimeric GTPases composed of three subunits: <scene name='90/904324/Heterotrimeric_labeled/3'>α, β, and γ</scene>. The α subunit acts as the main signal mediator and contains a binding site for GDP or GTP, which acts as a biological “switch” to regulate the transmission of a signal from the activated receptor.<ref name="edward"/><ref name="nelson"/> The α subunit will dissociate and can then move in the plane of the membrane from the receptor to bind to downstream effectors to continue signal transmission and ultimately produce a cellular response.<ref name="edward"/><ref name="nelson"/>
 +
=== G<sub>q</sub> and G<sub>i</sub> Family α Subunits ===
 +
The actions that G-proteins induce can be classified based on the sequence homology of α subunit (G<sub>α</sub>) present.<ref name="edward"/><ref name="Kamato"/> The most well-known are referred to as G<sub>i</sub>, G<sub>s</sub>, and G<sub>q</sub>. The G<sub>s</sub> and G<sub>q</sub> proteins are stimulatory, while the G<sub>i</sub> protein is inhibitory.<ref name="edward"/><ref name="Kamato"/> In addition, proteins are classified based on the signaling pathway that they regulate. For example, G<sub>q</sub> proteins are seen in a signaling pathway that relies on phospholipase C enzymes, while G<sub>s</sub> and G<sub>i</sub> proteins are regulators of adenylate cyclase.<ref name="Kamato"/> On this page, we will be focusing solely on the structures of the G<sub>q</sub> and G<sub>i</sub> proteins and their interactions with mast-cell receptors.
 +
G<sub>αq</sub> and G<sub>αi</sub> are proteins comprised of 359 amino acid residues, with varying sequences, that both contain a helical domain and a GTPase binding domain.<ref name= "Kamato">DOI: 10.3389/fcvm.2015.00014</ref> The GTPase binding domain is responsible for the hydrolysis of GTP as well as the binding of the β and γ subunits that form the trimeric protein structure. The helical domain contains six α helices, which are responsible for the binding of the G-protein to the coupled receptor.<ref name="Kamato"/>
 +
The conformations of the G-proteins vary based on their association with a particular membrane receptor due to interactions between the amino acids in the N-terminus of the α subunit and the C-terminus of the receptor.<ref name="Kamato"/>
 +
[[Image:Mast cell mechanism.png|500px|right|thumb|'''Figure 9.''' Cellular response of mast cell upon activation of MRGPRX2.]]
 +
Binding to the extracellular N-terminus domain triggers a transmembrane conformation change of MRGPRX2, which demonstrates a less significant change when compared to other class A GPCRs due to the surface level binding of the ligand to MRGPRX2.<ref name="Can"/> Once ligand binding and the conformational change to the active state have taken place, the signal is relayed to the α-subunit of the heterotrimeric G-protein.<ref name="nelson"/> The α-subunit will then exchange a GDP for GTP to initiate the dissociation of the α, β, and γ subunits.<ref name="nelson"/> During this dissociation, the α-subunit is able to travel away from the receptor in the plane of the membrane to bind to downstream effectors to produce a cellular response.<ref name="nelson"/>
= Clinical Relevance =
= Clinical Relevance =

Revision as of 17:39, 18 April 2022

Human Itch G-Coupled Protein Receptors

Cryo-EM structure of Gq coupled MRGPRX2.

Drag the structure with the mouse to rotate
Personal tools