User:Matheus Andrade Bettiol/Sandbox 1
From Proteopedia
(Difference between revisions)
Line 30: | Line 30: | ||
== Structure == | == Structure == | ||
- | RhoA is a monomeric protein comprise of 193 amino acids and its <scene name='97/973102/Estrutura_secundaria/1'>secundary structure</scene> is characterized by the presence of <span style="color:yellow;background-color:black;font-weight:bold;"> | + | RhoA is a monomeric protein comprise of 193 amino acids and its <scene name='97/973102/Estrutura_secundaria/1'>secundary structure</scene> is characterized by the presence of <span style="color:yellow;background-color:black;font-weight:bold;">a beta sheet (in yellow)</span> surrounded by <span style="color:pink;background-color:black;font-weight:bold;">alfa helix (in pink)</span> and <span style="color:purple;background-color:white;font-weight:bold;">310 helix (in purple)</span> connected by loops <ref>PMID: 9545299</ref>. Within the RhoA protein, distinct regions can be identified, each with specific functions: |
<scene name='97/973102/Bound_site/3'>GTPase Domain</scene>: This domain is responsible for binding and hydrolyzing <scene name='97/973102/Gtp/3'>GTP</scene>. Multiple parts of the protein are involved in the activity of this region <scene name='97/973102/Bound_site_detailed/2'>(see with more details)</scene>, <span style="color:chartreuse;background-color:white;font-weight:bold;">Mg ion</span> is also an important element, without which the affinity decreases more than 500-fold <ref>PMID: 10748207</ref>. | <scene name='97/973102/Bound_site/3'>GTPase Domain</scene>: This domain is responsible for binding and hydrolyzing <scene name='97/973102/Gtp/3'>GTP</scene>. Multiple parts of the protein are involved in the activity of this region <scene name='97/973102/Bound_site_detailed/2'>(see with more details)</scene>, <span style="color:chartreuse;background-color:white;font-weight:bold;">Mg ion</span> is also an important element, without which the affinity decreases more than 500-fold <ref>PMID: 10748207</ref>. |
Revision as of 11:29, 26 June 2023
|
References
- ↑ Jaffe AB, Hall A. Rho GTPases: biochemistry and biology. Annu Rev Cell Dev Biol. 2005;21:247-69. PMID:16212495 doi:10.1146/annurev.cellbio.21.020604.150721
- ↑ Bros M, Haas K, Moll L, Grabbe S. RhoA as a Key Regulator of Innate and Adaptive Immunity. Cells. 2019 Jul 17;8(7):733. PMID:31319592 doi:10.3390/cells8070733
- ↑ Hetmanski JH, Zindy E, Schwartz JM, Caswell PT. A MAPK-Driven Feedback Loop Suppresses Rac Activity to Promote RhoA-Driven Cancer Cell Invasion. PLoS Comput Biol. 2016 May 3;12(5):e1004909. PMID:27138333 doi:10.1371/journal.pcbi.1004909
- ↑ Schmidt SI, Blaabjerg M, Freude K, Meyer M. RhoA Signaling in Neurodegenerative Diseases. Cells. 2022 May 1;11(9):1520. PMID:35563826 doi:10.3390/cells11091520
- ↑ Xu H, Yang J, Gao W, Li L, Li P, Zhang L, Gong YN, Peng X, Xi JJ, Chen S, Wang F, Shao F. Innate immune sensing of bacterial modifications of Rho GTPases by the Pyrin inflammasome. Nature. 2014 Sep 11;513(7517):237-41. doi: 10.1038/nature13449. Epub 2014 Jun 11. PMID:24919149 doi:http://dx.doi.org/10.1038/nature13449
- ↑ Ihara K, Muraguchi S, Kato M, Shimizu T, Shirakawa M, Kuroda S, Kaibuchi K, Hakoshima T. Crystal structure of human RhoA in a dominantly active form complexed with a GTP analogue. J Biol Chem. 1998 Apr 17;273(16):9656-66. PMID:9545299
- ↑ Shimizu T, Ihara K, Maesaki R, Kuroda S, Kaibuchi K, Hakoshima T. An open conformation of switch I revealed by the crystal structure of a Mg2+-free form of RHOA complexed with GDP. Implications for the GDP/GTP exchange mechanism. J Biol Chem. 2000 Jun 16;275(24):18311-7. PMID:10748207 doi:10.1074/jbc.M910274199
- ↑ Schmidt SI, Blaabjerg M, Freude K, Meyer M. RhoA Signaling in Neurodegenerative Diseases. Cells. 2022 May 1;11(9):1520. PMID:35563826 doi:10.3390/cells11091520