6uzl

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Current revision (05:57, 14 May 2025) (edit) (undo)
 
Line 9: Line 9:
== Function ==
== Function ==
[https://www.uniprot.org/uniprot/MSBA_ECOLI MSBA_ECOLI] Involved in lipid A export and possibly also in glycerophospholipid export and for biogenesis of the outer membrane. Transmembrane domains (TMD) form a pore in the inner membrane and the ATP-binding domain (NBD) is responsible for energy generation.
[https://www.uniprot.org/uniprot/MSBA_ECOLI MSBA_ECOLI] Involved in lipid A export and possibly also in glycerophospholipid export and for biogenesis of the outer membrane. Transmembrane domains (TMD) form a pore in the inner membrane and the ATP-binding domain (NBD) is responsible for energy generation.
 +
<div style="background-color:#fffaf0;">
 +
== Publication Abstract from PubMed ==
 +
Previously we introduced peptidiscs as an alternative to detergents to stabilize membrane proteins in solution (Carlson et al., 2018). Here, we present 'on-gradient' reconstitution, a new gentle approach for the reconstitution of labile membrane-protein complexes, and used it to reconstitute Rhodobacter sphaeroides reaction center complexes, demonstrating that peptidiscs can adapt to transmembrane domains of very different sizes and shapes. Using the conventional 'on-bead' approach, we reconstituted Escherichia coli proteins MsbA and MscS and find that peptidiscs stabilize them in their native conformation and allow for high-resolution structure determination by cryo-electron microscopy. The structures reveal that peptidisc peptides can arrange around transmembrane proteins differently, thus revealing the structural basis for why peptidiscs can stabilize such a large variety of membrane proteins. Together, our results establish the gentle and easy-to-use peptidiscs as a potentially universal alternative to detergents as a means to stabilize membrane proteins in solution for structural and functional studies.
 +
 +
New approach for membrane protein reconstitution into peptidiscs and basis for their adaptability to different proteins.,Angiulli G, Dhupar HS, Suzuki H, Wason IS, Duong Van Hoa F, Walz T Elife. 2020 Mar 3;9. pii: 53530. doi: 10.7554/eLife.53530. PMID:32125274<ref>PMID:32125274</ref>
 +
 +
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
 +
</div>
 +
<div class="pdbe-citations 6uzl" style="background-color:#fffaf0;"></div>
 +
== References ==
 +
<references/>
__TOC__
__TOC__
</SX>
</SX>

Current revision

Cryo-EM structure of nucleotide-free MsbA reconstituted into peptidiscs, conformation 2

6uzl, resolution 4.40Å

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools