User:Letícia Oliveira Rojas Cruz/Sandbox 1
From Proteopedia
(Difference between revisions)
Line 9: | Line 9: | ||
The '''<scene name='10/1083732/Peptidase_domain/1'>Peptidase Domain</scene>''' is responsible for the enzymatic activity of ACE2. This domain can be divided in two subdomains: <scene name='10/1083732/Subdominio_1_nterm/1'>Subdomain I</scene> (residues 19–400) and <scene name='10/1083732/Subdominio_2_cterm/1'>Subdomain II</scene> (residues 401–615). Together, they form a substrate-binding cleft, where is located the '''<scene name='10/1083732/Sitio_zinco_com_residuos/1'>catalytic site</scene>''', denominated '''HEXXH+E zinc-binding motif'''. Within this site, a '''{{Font color|lime|zinc-ion}}''' is associated with the residues '''His374''', '''His378''', and '''Glu402''', which are going to perform a nucleophilic attack on the peptide bond of the substrate, leading to its cleavage. '''<scene name='10/1083732/Peptidase_domain_hydrofobic/2'>Hydrophobic portions</scene>''' within each subdomain, composed mainly of nonpolar residues provide tertiary structural stability, maintaining the correct spatial arrangement of catalytic residues. In the animation, we can observe a concentration of the '''{{Font color|gray|hydrophobic residues}}''' towards the center of the molecule, while the '''{{Font color|orchid|polar}}''' ones are towards the outside part of the molecule. | The '''<scene name='10/1083732/Peptidase_domain/1'>Peptidase Domain</scene>''' is responsible for the enzymatic activity of ACE2. This domain can be divided in two subdomains: <scene name='10/1083732/Subdominio_1_nterm/1'>Subdomain I</scene> (residues 19–400) and <scene name='10/1083732/Subdominio_2_cterm/1'>Subdomain II</scene> (residues 401–615). Together, they form a substrate-binding cleft, where is located the '''<scene name='10/1083732/Sitio_zinco_com_residuos/1'>catalytic site</scene>''', denominated '''HEXXH+E zinc-binding motif'''. Within this site, a '''{{Font color|lime|zinc-ion}}''' is associated with the residues '''His374''', '''His378''', and '''Glu402''', which are going to perform a nucleophilic attack on the peptide bond of the substrate, leading to its cleavage. '''<scene name='10/1083732/Peptidase_domain_hydrofobic/2'>Hydrophobic portions</scene>''' within each subdomain, composed mainly of nonpolar residues provide tertiary structural stability, maintaining the correct spatial arrangement of catalytic residues. In the animation, we can observe a concentration of the '''{{Font color|gray|hydrophobic residues}}''' towards the center of the molecule, while the '''{{Font color|orchid|polar}}''' ones are towards the outside part of the molecule. | ||
- | The following domain is the '''<scene name='10/1083732/Collectrin-like_domain/3'>Collectrin-like Domain</scene>''', formed by '''{{Font color|gold|4 beta sheets}}''' and '''{{Font color|deeppink|3 alpha-helices}}''' that make a | + | The following domain is the '''<scene name='10/1083732/Collectrin-like_domain/3'>Collectrin-like Domain</scene>''', formed by '''{{Font color|gold|4 beta sheets}}''' and '''{{Font color|deeppink|3 alpha-helices}}''' that make a hydrophobic core, structure that is important for stabilizing ACE2 dimers, which will be represented later on this page. |
+ | |||
+ | The <scene name='10/1083732/Transmembrane_domain/1'>Transmembrane Domain</scene> is composed of a '''{{Font color|red|single alpha helix}}''', made of a majority of <scene name='10/1083732/Transmembrane_domain_hydrop/1'>hydrophobic residues</scene> (in '''{{Font color|gray|gray}}'''). This characteristic allows ACE2 to be anchored in the plasma membrane, due to its hydrophobic nature. | ||
- | The Transmembrane Domain | ||
== Function == | == Function == |
Revision as of 15:34, 22 June 2025
Introduction
|
References
- ↑ Hanson, R. M., Prilusky, J., Renjian, Z., Nakane, T. and Sussman, J. L. (2013), JSmol and the Next-Generation Web-Based Representation of 3D Molecular Structure as Applied to Proteopedia. Isr. J. Chem., 53:207-216. doi:http://dx.doi.org/10.1002/ijch.201300024
- ↑ Hanson, R. M., Prilusky, J., Renjian, Z., Nakane, T. and Sussman, J. L. (2013), JSmol and the Next-Generation Web-Based Representation of 3D Molecular Structure as Applied to Proteopedia. Isr. J. Chem., 53:207-216. doi:http://dx.doi.org/10.1002/ijch.201300024
- ↑ Hanson, R. M., Prilusky, J., Renjian, Z., Nakane, T. and Sussman, J. L. (2013), JSmol and the Next-Generation Web-Based Representation of 3D Molecular Structure as Applied to Proteopedia. Isr. J. Chem., 53:207-216. doi:http://dx.doi.org/10.1002/ijch.201300024