2r5v

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 1: Line 1:
[[Image:2r5v.jpg|left|200px]]
[[Image:2r5v.jpg|left|200px]]
-
{{Structure
+
<!--
-
|PDB= 2r5v |SIZE=350|CAPTION= <scene name='initialview01'>2r5v</scene>, resolution 2.300&Aring;
+
The line below this paragraph, containing "STRUCTURE_2r5v", creates the "Structure Box" on the page.
-
|SITE= <scene name='pdbsite=AC1:Co+Binding+Site+For+Residue+A+4113'>AC1</scene>, <scene name='pdbsite=AC2:Co+Binding+Site+For+Residue+B+4114'>AC2</scene>, <scene name='pdbsite=AC3:Po4+Binding+Site+For+Residue+B+4115'>AC3</scene>, <scene name='pdbsite=AC4:Hhh+Binding+Site+For+Residue+B+4116'>AC4</scene> and <scene name='pdbsite=AC5:Hhh+Binding+Site+For+Residue+A+4114'>AC5</scene>
+
You may change the PDB parameter (which sets the PDB file loaded into the applet)
-
|LIGAND= <scene name='pdbligand=CO:COBALT+(II)+ION'>CO</scene>, <scene name='pdbligand=HHH:(2S)-HYDROXY(4-HYDROXYPHENYL)ETHANOIC+ACID'>HHH</scene>, <scene name='pdbligand=PO4:PHOSPHATE+ION'>PO4</scene>
+
or the SCENE parameter (which sets the initial scene displayed when the page is loaded),
-
|ACTIVITY= <span class='plainlinks'>[http://en.wikipedia.org/wiki/4-hydroxymandelate_synthase 4-hydroxymandelate synthase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=1.13.11.46 1.13.11.46] </span>
+
or leave the SCENE parameter empty for the default display.
-
|GENE= HmaS ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=31958 Amycolatopsis orientalis])
+
-->
-
|DOMAIN=
+
{{STRUCTURE_2r5v| PDB=2r5v | SCENE= }}
-
|RELATEDENTRY=
+
-
|RESOURCES=<span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2r5v FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2r5v OCA], [http://www.ebi.ac.uk/pdbsum/2r5v PDBsum], [http://www.rcsb.org/pdb/explore.do?structureId=2r5v RCSB]</span>
+
-
}}
+
'''Hydroxymandelate Synthase Crystal Structure'''
'''Hydroxymandelate Synthase Crystal Structure'''
Line 30: Line 27:
[[Category: He, P.]]
[[Category: He, P.]]
[[Category: Moran, G R.]]
[[Category: Moran, G R.]]
-
[[Category: dioxygenase]]
+
[[Category: Dioxygenase]]
-
[[Category: non-heme iron]]
+
[[Category: Non-heme iron]]
-
[[Category: oxidoreductase]]
+
[[Category: Oxidoreductase]]
-
[[Category: vancomycin]]
+
[[Category: Vancomycin]]
-
 
+
''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Sun May 4 16:18:18 2008''
-
''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Mon Mar 31 04:56:53 2008''
+

Revision as of 13:18, 4 May 2008

Template:STRUCTURE 2r5v

Hydroxymandelate Synthase Crystal Structure


Overview

The crystal structure of the hydroxymandelate synthase (HMS).Co2+.hydroxymandelate (HMA) complex determined to a resolution of 2.3 A reveals an overall fold that consists of two similar beta-barrel domains, one of which contains the characteristic His/His/acid metal-coordination motif (facial triad) found in the majority of Fe2+-dependent oxygenases. The fold of the alpha-carbon backbone closely resembles that of the evolutionarily related enzyme 4-hydroxyphenylpyruvate dioxygenase (HPPD) in its closed conformation with a root-mean-square deviation of 1.85 A. HPPD uses the same substrates as HMS but forms instead homogentisate (HG). The active site of HMS is significantly smaller than that observed in HPPD, reflecting the relative changes in shape that occur in the conversion of the common HPP substrate to the respective HMA or HG products. The HMA benzylic hydroxyl and carboxylate oxygens coordinate to the Co2+ ion, and three other potential H-bonding interactions to active site residue side chains are observed. Additionally, it is noted that there is a buried well-ordered water molecule 3.2 A from the distal carboxylate oxygen. The p-hydroxyl group of HMA is within hydrogen-bonding distance of the side chain hydroxyl of a serine residue (Ser201) that is conserved in both HMS and HPPD. This potential hydrogen bond and the known geometry of iron ligation for the substrate allowed us to model 4-hydroxyphenylpyruvate (HPP) in the active sites of both HMS and HPPD. These models suggest that the position of the HPP substrate differs between the two enzymes. In HMS, HPP binds analogously to HMA, while in HPPD, the p-hydroxyl group of HPP acts as a hydrogen-bond donor and acceptor to Ser201 and Asn216, respectively. It is suggested that this difference in the ring orientation of the substrate and the corresponding intermediates influences the site of hydroxylation.

About this Structure

2R5V is a Single protein structure of sequence from Amycolatopsis orientalis. Full crystallographic information is available from OCA.

Reference

Two roads diverged: the structure of hydroxymandelate synthase from Amycolatopsis orientalis in complex with 4-hydroxymandelate., Brownlee J, He P, Moran GR, Harrison DH, Biochemistry. 2008 Feb 19;47(7):2002-13. Epub 2008 Jan 24. PMID:18215022 Page seeded by OCA on Sun May 4 16:18:18 2008

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools