Perindopril

From Proteopedia

Revision as of 11:19, 9 December 2010 by David Canner (Talk | contribs)
Jump to: navigation, search

Perindoprilat, the metabolite of Perindopril, also known as Aceon

Drag the structure with the mouse to rotate

Better Known as: Aceon

Mechanism of Action

Angiotensin II has been implicated in cardiac, renal and vascular diseases. Bradykinin, a small peptide that counterbalance the effects of Angiotensin II by acting as a strong vasodilator upon binding AT2, is degraded by the same ACE-1 enzyme. Since ACE-1 is the primary producer of Angiotensin II and degrader of Bradykinins, inhibition of ACE-1 has proven an effective treatment for Hypertension.[1] Perindopril is rapidly metabolized into its highly active metabolite Perindoprilat by hepatic enzymes. Perindoprilat binds to the active site of , actively inhibiting ACE-1 from binding and converting Angiotensin I into Angiotensin II. ACE-1 using residues Gln 265, Lys 495, Tyr 504, His 497, His 337, Tyr 496, Ala 338, Glu 368, His 367, HIs 371, Glu 395 and Asp 399 to tightly affix the inhibitor to the active site of ACE-1.

Pharmacokinetics

ACE-Inhibitor Pharmacokinetics Comparison at Equivalent Dosages [2][3][4][5]
Parameter Captopril Lisinopril Ramipril Enalapril Benazepril Perindopril Trandolapril
Tmax (hr) .98 6.5 .67 1.06 .5 .75 .72
Cmax (ng/ml) 1210 79 16.4 314 149 105 1.68
Bioavailability (%) 72 25 28 60 97 24 10
Protein Binding (%) 97 0 73 20 97 20 80
T1/2 (hr) .56 10.1 1.93 1.6 10 .9 .68
AUC (ng/ml/hr) 1673 1016 21.9 450 140 182 1.86
IC50 (nM) 1.1 5.5 5.0 5.4 1.7 2.4 2.5
Dosage (mg) 10 20 5 20 10 4 2
Metabolism Hepatic (CYP2D6) None Hepatic Hepatic (CYP3A4) Hepatic Hepatic Hepatic (CYP2D6 & CYP2C9)

References

  1. Ferrario CM. Role of angiotensin II in cardiovascular disease therapeutic implications of more than a century of research. J Renin Angiotensin Aldosterone Syst. 2006 Mar;7(1):3-14. PMID:17083068
  2. Sun JX, Cipriano A, Chan K, John VA. Pharmacokinetic interaction study between benazepril and amlodipine in healthy subjects. Eur J Clin Pharmacol. 1994;47(3):285-9. PMID:7867683
  3. Arafat T, Awad R, Hamad M, Azzam R, Al-Nasan A, Jehanli A, Matalka K. Pharmacokinetics and pharmacodynamics profiles of enalapril maleate in healthy volunteers following determination of enalapril and enalaprilat by two specific enzyme immunoassays. J Clin Pharm Ther. 2005 Aug;30(4):319-28. PMID:15985045 doi:10.1111/j.1365-2710.2005.00646.x
  4. Tamimi JJ, Salem II, Alam SM, Zaman Q, Dham R. Bioequivalence evaluation of two brands of lisinopril tablets (Lisotec and Zestril) in healthy human volunteers. Biopharm Drug Dispos. 2005 Nov;26(8):335-9. PMID:16075412 doi:10.1002/bdd.465
  5. Arner P, Wade A, Engfeldt P, Mouren M, Stepniewski JP, Sultan E, Bryce T, Lenfant B. Pharmacokinetics and pharmacodynamics of trandolapril after repeated administration of 2 mg to young and elderly patients with mild-to-moderate hypertension. J Cardiovasc Pharmacol. 1994;23 Suppl 4:S44-9. PMID:7527101


Proteopedia Page Contributors and Editors (what is this?)

David Canner, Alexander Berchansky

Personal tools