Sandbox Reserved 1613

From Proteopedia

Revision as of 13:33, 21 April 2020 by Shelby Skaggs (Talk | contribs)
Jump to: navigation, search

ABCG2 Transporter Protein

Figure 1: ABCG2 6FFC

Drag the structure with the mouse to rotate

References

  1. 1.0 1.1 1.2 Robey RW, Pluchino KM, Hall MD, Fojo AT, Bates SE, Gottesman MM. Revisiting the role of ABC transporters in multidrug-resistant cancer. Nat Rev Cancer. 2018 Jul;18(7):452-464. doi: 10.1038/s41568-018-0005-8. PMID:29643473 doi:http://dx.doi.org/10.1038/s41568-018-0005-8
  2. Manolaridis I, Jackson SM, Taylor NMI, Kowal J, Stahlberg H, Locher KP. Cryo-EM structures of a human ABCG2 mutant trapped in ATP-bound and substrate-bound states. Nature. 2018 Nov;563(7731):426-430. doi: 10.1038/s41586-018-0680-3. Epub 2018 Nov, 7. PMID:30405239 doi:http://dx.doi.org/10.1038/s41586-018-0680-3
  3. 3.0 3.1 PMID:28554189</> Its (yellow is inter- and intra-molecular disulfides, golden is intra-molecular only) promote the release of the substrate from the cavity into the extracellular space. One interesting feature of the NBD's is the fact that they remain in contact with one another even without a bound substrate. This makes the ABCG2 transporter unique and provides greater substrate specificity as the entrance to the transporter is not as globular as either ABCB1 or ABCC1. The entrance from the cytoplasm to the transporter is a hydrophobic membrane entrance lined by in both monomers. Dimerization of ABCG2 was originally thought to be achieved with the help of the in each of the two domains but Cryo-EM showed that the motifs were on opposite sides of the protein. <ref>PMID:30405239</li> <li id="cite_note-Jackson-3">↑ <sup>[[#cite_ref-Jackson_3-0|4.0]]</sup> <sup>[[#cite_ref-Jackson_3-1|4.1]]</sup> Jackson SM, Manolaridis I, Kowal J, Zechner M, Taylor NMI, Bause M, Bauer S, Bartholomaeus R, Bernhardt G, Koenig B, Buschauer A, Stahlberg H, Altmann KH, Locher KP. Structural basis of small-molecule inhibition of human multidrug transporter ABCG2. Nat Struct Mol Biol. 2018 Apr;25(4):333-340. doi: 10.1038/s41594-018-0049-1. Epub, 2018 Apr 2. PMID:[http://www.ncbi.nlm.nih.gov/pubmed/29610494 29610494] doi:[http://dx.doi.org/10.1038/s41594-018-0049-1 http://dx.doi.org/10.1038/s41594-018-0049-1]</li> <li id="cite_note-Fetsch-4">[[#cite_ref-Fetsch_4-0|↑]] Fetsch PA, Abati A, Litman T, Morisaki K, Honjo Y, Mittal K, Bates SE. Localization of the ABCG2 mitoxantrone resistance-associated protein in normal tissues. Cancer Lett. 2006 Apr 8;235(1):84-92. doi: 10.1016/j.canlet.2005.04.024. Epub, 2005 Jun 28. PMID:[http://www.ncbi.nlm.nih.gov/pubmed/15990223 15990223] doi:[http://dx.doi.org/10.1016/j.canlet.2005.04.024 http://dx.doi.org/10.1016/j.canlet.2005.04.024]</li> <li id="cite_note-Cleophas-5">[[#cite_ref-Cleophas_5-0|↑]] Cleophas MC, Joosten LA, Stamp LK, Dalbeth N, Woodward OM, Merriman TR. ABCG2 polymorphisms in gout: insights into disease susceptibility and treatment approaches. Pharmgenomics Pers Med. 2017 Apr 20;10:129-142. doi: 10.2147/PGPM.S105854., eCollection 2017. PMID:[http://www.ncbi.nlm.nih.gov/pubmed/28461764 28461764] doi:[http://dx.doi.org/10.2147/PGPM.S105854 http://dx.doi.org/10.2147/PGPM.S105854]</li></ol></ref>

Student Contributors

Shelby Skaggs, Samuel Sullivan, Jaelyn Voyles

Personal tools