User:Marvin O'Neal/VlsE

From Proteopedia

Jump to: navigation, search

VlsE

Drag the structure with the mouse to rotate

Contents

Overview

is a surface lipoprotein of Borrelia burgdorferi, the causative agent of Lyme Disease. It undergoes antigenic variation ostensibly important in evasion of the host’s immune system. In addition, the protein is used for Lyme disease diagnosis. It is composed of four similar subunits each possessing two invariable domains and one variable domain [1] . The variable domain contains six variable regions (VR1-VR6), and six invariable regions (IR1-IR6). Research suggests that the protein may exist as a dimer where the C & N monomeric termini neighbor each other forming the membrane proximal portion of the protein, and the variable regions form the membrane distal portion [2] [3]. The invariable regions are largely embedded in the protein and remain relatively unchanged within the host and across strains. The variable regions encompass 37% of the VlsE’s exposed surface area despite comprising only 25% of the protein [4] [5]. However, 50% of the VR surface area is exposed while IR6, in contrast, exposes just 13.7% of its surface area. This leaves only of the antigenic IR6 unprotected; lysine-276, glutamine-279, lysine-291, and lysine-294. Thus, it is almost entirely embedded in the protein and [6].



Function in Immune System Evasion

VlsE is essential to the persistence and virulence of Lyme disease [7]. This rapid recombination event is stimulated by the host’s cytokines and absence of those cytokines results in a decreased bacterial burden [8]. In addition, VlsE is upregulated under humoral immune pressure [9]. The variable regions undergo the a recombination event leading to variation with an estimated 1030 possible combinations, far exceeding the number of antibodies found in the human immune system. This makes it unlikely that enough of a single VR variation will be present in large enough supply to lead to an immunodominant variable region [10]. Thus, shielding of the immunodominant IR6 by regions not subject to antibody response allows for IR6 to elicit an immune response while remaining inaccessible to antibody binding [11] [12] [13].

While the exact mechanism for immune evasion remains unknown several theories have been put forth. One popular theory is that VlsE masks other surface antigens by coating the surface of the bacteria, thereby sterically blocking the antigens from antibody binding. This is similar to other pathogens with variable regions, such as the protozoa responsible for African sleeping sickness and also the bacterium that causes gonorrhea. However, recent studies have cast doubt on this theory. An alternate theory provides that VlsE directly stimulates B cell antibody production independent of T-cells. The robust response elicited is thought to override antibody production against other antigens [14].



 

PDB ID 1l8w.pdb

Drag the structure with the mouse to rotate
VlsE (1l8w), resolution 2.3Å ().

Highlight: , , , , , , .


Image:Vlse12.png


C6 Diagnostic Testing

Throughout the course of the disease IR6 produces a strong antibody response that can be identified from early to late phases, and which lasts for months to years following treatment. Applications in diagnostic testing have been identified as a result of this strong immune response and IR6’s relative invariability across strains [15] [16]. A C6 ELISA test has been developed which uses a 26-mer synthetic peptide with the IR6 sequence. Results show 99% specificity and 100% precision with high sensitivity. In fact, OspA vaccination does not influence C6 specificity; therefore, C6 ELISA tests are valuable diagnostic tools for patients vaccinated against OspA. The CDC currently recommends a two-step test incorporating first an ELISA followed by a Western blot to eliminate false positives. Therefore, this one-step ELISA test presents an economical and more accurate improvement over the current two-step model [17].



Additional Links

Lyme Disease Microbiology CDC Lyme Disease Page Lyme Disease Ecology, Epidemiology, and Prevention of Lyme Disease- CDC Antigenic Variation






















References

  1. Liang FT, Philipp MT. Analysis of antibody response to invariable regions of VlsE, the variable surface antigen of Borrelia burgdorferi. Infect Immun. 1999 Dec;67(12):6702-6. PMID:10569796
  2. Eicken C, Sharma V, Klabunde T, Lawrenz MB, Hardham JM, Norris SJ, Sacchettini JC. Crystal structure of Lyme disease variable surface antigen VlsE of Borrelia burgdorferi. J Biol Chem. 2002 Jun 14;277(24):21691-6. Epub 2002 Mar 28. PMID:11923306 doi:10.1074/jbc.M201547200
  3. Jones K, Guidry J, Wittung-Stafshede P. Characterization of surface antigen from Lyme disease spirochete Borrelia burgdorferi. Biochem Biophys Res Commun. 2001 Nov 30;289(2):389-94. PMID:11716485 doi:10.1006/bbrc.2001.5983
  4. Liang FT, Philipp MT. Analysis of antibody response to invariable regions of VlsE, the variable surface antigen of Borrelia burgdorferi. Infect Immun. 1999 Dec;67(12):6702-6. PMID:10569796
  5. Eicken C, Sharma V, Klabunde T, Lawrenz MB, Hardham JM, Norris SJ, Sacchettini JC. Crystal structure of Lyme disease variable surface antigen VlsE of Borrelia burgdorferi. J Biol Chem. 2002 Jun 14;277(24):21691-6. Epub 2002 Mar 28. PMID:11923306 doi:10.1074/jbc.M201547200
  6. Eicken C, Sharma V, Klabunde T, Lawrenz MB, Hardham JM, Norris SJ, Sacchettini JC. Crystal structure of Lyme disease variable surface antigen VlsE of Borrelia burgdorferi. J Biol Chem. 2002 Jun 14;277(24):21691-6. Epub 2002 Mar 28. PMID:11923306 doi:10.1074/jbc.M201547200
  7. Bankhead T, Chaconas G. The role of VlsE antigenic variation in the Lyme disease spirochete: persistence through a mechanism that differs from other pathogens. Mol Microbiol. 2007 Sep;65(6):1547-58. Epub 2007 Aug 21. PMID:17714442 doi:10.1111/j.1365-2958.2007.05895.x
  8. Anguita J, Thomas V, Samanta S, Persinski R, Hernanz C, Barthold SW, Fikrig E. Borrelia burgdorferi-induced inflammation facilitates spirochete adaptation and variable major protein-like sequence locus recombination. J Immunol. 2001 Sep 15;167(6):3383-90. PMID:11544329
  9. Liang FT, Yan J, Mbow ML, Sviat SL, Gilmore RD, Mamula M, Fikrig E. Borrelia burgdorferi changes its surface antigenic expression in response to host immune responses. Infect Immun. 2004 Oct;72(10):5759-67. PMID:15385475 doi:10.1128/IAI.72.10.5759-5767.2004
  10. Liang FT, Alvarez AL, Gu Y, Nowling JM, Ramamoorthy R, Philipp MT. An immunodominant conserved region within the variable domain of VlsE, the variable surface antigen of Borrelia burgdorferi. J Immunol. 1999 Nov 15;163(10):5566-73. PMID:10553085
  11. Eicken C, Sharma V, Klabunde T, Lawrenz MB, Hardham JM, Norris SJ, Sacchettini JC. Crystal structure of Lyme disease variable surface antigen VlsE of Borrelia burgdorferi. J Biol Chem. 2002 Jun 14;277(24):21691-6. Epub 2002 Mar 28. PMID:11923306 doi:10.1074/jbc.M201547200
  12. Anguita J, Thomas V, Samanta S, Persinski R, Hernanz C, Barthold SW, Fikrig E. Borrelia burgdorferi-induced inflammation facilitates spirochete adaptation and variable major protein-like sequence locus recombination. J Immunol. 2001 Sep 15;167(6):3383-90. PMID:11544329
  13. Liang FT, Philipp MT. Epitope mapping of the immunodominant invariable region of Borrelia burgdorferi VlsE in three host species. Infect Immun. 2000 Apr;68(4):2349-52. PMID:10722641
  14. Bankhead T, Chaconas G. The role of VlsE antigenic variation in the Lyme disease spirochete: persistence through a mechanism that differs from other pathogens. Mol Microbiol. 2007 Sep;65(6):1547-58. Epub 2007 Aug 21. PMID:17714442 doi:10.1111/j.1365-2958.2007.05895.x
  15. Liang FT, Steere AC, Marques AR, Johnson BJ, Miller JN, Philipp MT. Sensitive and specific serodiagnosis of Lyme disease by enzyme-linked immunosorbent assay with a peptide based on an immunodominant conserved region of Borrelia burgdorferi vlsE. J Clin Microbiol. 1999 Dec;37(12):3990-6. PMID:10565920
  16. Liang FT, Philipp MT. Epitope mapping of the immunodominant invariable region of Borrelia burgdorferi VlsE in three host species. Infect Immun. 2000 Apr;68(4):2349-52. PMID:10722641
  17. Liang FT, Steere AC, Marques AR, Johnson BJ, Miller JN, Philipp MT. Sensitive and specific serodiagnosis of Lyme disease by enzyme-linked immunosorbent assay with a peptide based on an immunodominant conserved region of Borrelia burgdorferi vlsE. J Clin Microbiol. 1999 Dec;37(12):3990-6. PMID:10565920

Proteopedia Page Contributors and Editors (what is this?)

Frank J. Albergo, Tanya Turkewitz, Rachel Cirineo, Jaime Prilusky

Personal tools