Signal transduction
From Proteopedia
(Difference between revisions)
(16 intermediate revisions not shown.) | |||
Line 1: | Line 1: | ||
<StructureSection load='' size='300' side='right' scene='Journal:JBSD:16/Cv/2' caption='Nicotinic Acetylcholine Receptor, PDB code [[2bg9]]'> | <StructureSection load='' size='300' side='right' scene='Journal:JBSD:16/Cv/2' caption='Nicotinic Acetylcholine Receptor, PDB code [[2bg9]]'> | ||
- | '''Under development!''' | ||
*[[Ligand]] | *[[Ligand]] | ||
*[[Types of ligands]] | *[[Types of ligands]] | ||
Line 219: | Line 218: | ||
'''[[Signaling Pathways]]:''' | '''[[Signaling Pathways]]:''' | ||
*[[Akt/PKB signaling pathway]] | *[[Akt/PKB signaling pathway]] | ||
- | *AMPK signaling pathway | + | *[[AMPK signaling pathway]] |
- | *cAMP-dependent pathway | + | *[[cAMP-dependent pathway]] |
- | *Eph/ephrin signaling pathway | + | *[[Eph/ephrin signaling pathway]] |
- | *Hedgehog signaling pathway | + | *[[Hedgehog signaling pathway]] |
- | * | + | *[[Insulin signal transduction pathway]] |
- | + | *[[JAK-STAT signaling pathway]] | |
- | *JAK-STAT signaling pathway | + | |
*[[MAPK/ERK pathway]] | *[[MAPK/ERK pathway]] | ||
- | *mTOR signaling pathway | + | *[[mTOR signaling pathway]] |
- | *Nodal signaling pathway | + | *[[Nodal signaling pathway]] |
- | *Notch signaling pathway | + | *[[Notch signaling pathway]] |
- | *PI3K/AKT/mTOR signaling pathway | + | *[[PI3K/AKT/mTOR signaling pathway]] |
*[[TGF beta signaling pathway]] | *[[TGF beta signaling pathway]] | ||
- | *TLR signaling pathway | + | *[[TLR signaling pathway]] |
- | *VEGF signaling pathway | + | *[[VEGF signaling pathway]] |
- | *Wnt signaling pathway | + | *[[Wnt signaling pathway]] |
[[MAPK/ERK pathway]] | [[MAPK/ERK pathway]] | ||
Line 324: | Line 322: | ||
*[[Inositol 1,4,5-Trisphosphate Receptor]] | *[[Inositol 1,4,5-Trisphosphate Receptor]] | ||
- | Paracrine signaling: | + | '''[[Paracrine signaling]]:''' |
+ | Fibroblast growth factor (FGF) family, Hedgehog family, Wnt family, and TGF-β superfamily | ||
- | [[Fibroblast growth factor]] and [[Fibroblast growth factor receptor]] (FGFR). FGFR belongs to Receptor tyrosine kinases, class V. | + | *[[Fibroblast growth factor]] and [[Fibroblast growth factor receptor]] (FGFR). FGFR belongs to Receptor tyrosine kinases, class V. |
+ | *[[Hedgehog signaling pathway]] | ||
+ | *[[TGF beta signaling pathway]] | ||
+ | *[[Wnt signaling pathway]] | ||
- | ''' | + | '''[[Intracrine signaling]]''' |
- | + | ||
- | + | ||
'''[[Ca2+ signalling processes]]''' | '''[[Ca2+ signalling processes]]''' |
Current revision
|
References
- ↑ Chatterjee S. Neutral sphingomyelinase: past, present and future. Chem Phys Lipids. 1999 Nov;102(1-2):79-96. PMID:11001563
- ↑ Barna TM, Khan H, Bruce NC, Barsukov I, Scrutton NS, Moody PC. Crystal structure of pentaerythritol tetranitrate reductase: "flipped" binding geometries for steroid substrates in different redox states of the enzyme. J Mol Biol. 2001 Jul 6;310(2):433-47. PMID:11428899 doi:10.1006/jmbi.2001.4779
- ↑ Tuteja G, Kaestner KH. SnapShot: forkhead transcription factors I. Cell. 2007 Sep 21;130(6):1160. PMID:17889656 doi:http://dx.doi.org/10.1016/j.cell.2007.09.005
- ↑ Kaiser G, Gerst F, Michael D, Berchtold S, Friedrich B, Strutz-Seebohm N, Lang F, Haring HU, Ullrich S. Regulation of forkhead box O1 (FOXO1) by protein kinase B and glucocorticoids: different mechanisms of induction of beta cell death in vitro. Diabetologia. 2013 Jul;56(7):1587-95. doi: 10.1007/s00125-013-2863-7. Epub 2013, Feb 23. PMID:23435785 doi:http://dx.doi.org/10.1007/s00125-013-2863-7
- ↑ Horwitz KB, Jackson TA, Bain DL, Richer JK, Takimoto GS, Tung L. Nuclear receptor coactivators and corepressors. Mol Endocrinol. 1996 Oct;10(10):1167-77. PMID:9121485 doi:http://dx.doi.org/10.1210/mend.10.10.9121485
- ↑ Arner ES, Holmgren A. Physiological functions of thioredoxin and thioredoxin reductase. Eur J Biochem. 2000 Oct;267(20):6102-9. PMID:11012661
- ↑ Prasad R, Chan LF, Hughes CR, Kaski JP, Kowalczyk JC, Savage MO, Peters CJ, Nathwani N, Clark AJ, Storr HL, Metherell LA. Thioredoxin Reductase 2 (TXNRD2) mutation associated with familial glucocorticoid deficiency (FGD). J Clin Endocrinol Metab. 2014 Aug;99(8):E1556-63. doi: 10.1210/jc.2013-3844. Epub, 2014 Mar 6. PMID:24601690 doi:http://dx.doi.org/10.1210/jc.2013-3844
- ↑ Arner ES, Holmgren A. Physiological functions of thioredoxin and thioredoxin reductase. Eur J Biochem. 2000 Oct;267(20):6102-9. PMID:11012661
- ↑ Fritz-Wolf K, Kehr S, Stumpf M, Rahlfs S, Becker K. Crystal structure of the human thioredoxin reductase-thioredoxin complex. Nat Commun. 2011 Jul 12;2:383. doi: 10.1038/ncomms1382. PMID:21750537 doi:10.1038/ncomms1382
- ↑ Murakami M, Nakatani Y, Tanioka T, Kudo I. Prostaglandin E synthase. Prostaglandins Other Lipid Mediat. 2002 Aug;68-69:383-99. PMID:12432931
- ↑ Kudo I, Murakami M. Prostaglandin E synthase, a terminal enzyme for prostaglandin E2 biosynthesis. J Biochem Mol Biol. 2005 Nov 30;38(6):633-8. PMID:16336776
- ↑ Luz JG, Antonysamy S, Kuklish SL, Condon B, Lee MR, Allison D, Yu XP, Chandrasekhar S, Backer R, Zhang A, Russell M, Chang SS, Harvey A, Sloan AV, Fisher MJ. Crystal Structures of mPGES-1 Inhibitor Complexes Form a Basis for the Rational Design of Potent Analgesic and Anti-Inflammatory Therapeutics. J Med Chem. 2015 May 20. PMID:25961169 doi:http://dx.doi.org/10.1021/acs.jmedchem.5b00330
- ↑ Frey FJ, Odermatt A, Frey BM. Glucocorticoid-mediated mineralocorticoid receptor activation and hypertension. Curr Opin Nephrol Hypertens. 2004 Jul;13(4):451-8. PMID:15199296
- ↑ Pujo L, Fagart J, Gary F, Papadimitriou DT, Claes A, Jeunemaitre X, Zennaro MC. Mineralocorticoid receptor mutations are the principal cause of renal type 1 pseudohypoaldosteronism. Hum Mutat. 2007 Jan;28(1):33-40. PMID:16972228 doi:10.1002/humu.20371
- ↑ Geller DS, Farhi A, Pinkerton N, Fradley M, Moritz M, Spitzer A, Meinke G, Tsai FT, Sigler PB, Lifton RP. Activating mineralocorticoid receptor mutation in hypertension exacerbated by pregnancy. Science. 2000 Jul 7;289(5476):119-23. PMID:10884226
- ↑ Lother A, Bergemann S, Kowalski J, Huck M, Gilsbach R, Bode C, Hein L. Inhibition of the cardiac myocyte mineralocorticoid receptor ameliorates doxorubicin-induced cardiotoxicity. Cardiovasc Res. 2018 Feb 1;114(2):282-290. doi: 10.1093/cvr/cvx078. PMID:28430882 doi:http://dx.doi.org/10.1093/cvr/cvx078
- ↑ Caprio M, Feve B, Claes A, Viengchareun S, Lombes M, Zennaro MC. Pivotal role of the mineralocorticoid receptor in corticosteroid-induced adipogenesis. FASEB J. 2007 Jul;21(9):2185-94. doi: 10.1096/fj.06-7970com. Epub 2007 Mar 23. PMID:17384139 doi:http://dx.doi.org/10.1096/fj.06-7970com
- ↑ Bledsoe RK, Madauss KP, Holt JA, Apolito CJ, Lambert MH, Pearce KH, Stanley TB, Stewart EL, Trump RP, Willson TM, Williams SP. A ligand-mediated hydrogen bond network required for the activation of the mineralocorticoid receptor. J Biol Chem. 2005 Sep 2;280(35):31283-93. Epub 2005 Jun 20. PMID:15967794 doi:http://dx.doi.org/10.1074/jbc.M504098200
- ↑ Bohl CE, Wu Z, Chen J, Mohler ML, Yang J, Hwang DJ, Mustafa S, Miller DD, Bell CE, Dalton JT. Effect of B-ring substitution pattern on binding mode of propionamide selective androgen receptor modulators. Bioorg Med Chem Lett. 2008 Oct 15;18(20):5567-70. Epub 2008 Sep 5. PMID:18805694 doi:10.1016/j.bmcl.2008.09.002
- ↑ Sarge KD, Murphy SP, Morimoto RI. Activation of heat shock gene transcription by heat shock factor 1 involves oligomerization, acquisition of DNA-binding activity, and nuclear localization and can occur in the absence of stress. Mol Cell Biol. 1993 Mar;13(3):1392-407. PMID:8441385
- ↑ Kondo N, Katsuno M, Adachi H, Minamiyama M, Doi H, Matsumoto S, Miyazaki Y, Iida M, Tohnai G, Nakatsuji H, Ishigaki S, Fujioka Y, Watanabe H, Tanaka F, Nakai A, Sobue G. Heat shock factor-1 influences pathological lesion distribution of polyglutamine-induced neurodegeneration. Nat Commun. 2013;4:1405. doi: 10.1038/ncomms2417. PMID:23360996 doi:http://dx.doi.org/10.1038/ncomms2417
- ↑ Ghosh, D., Griswold, J., Erman, M., Pangborn, W. " X-ray Structure of Human Aromatase Reveals An Androgen-Specific Active Site" Journal of Steroid Biochemistry and Molecular Biology. [Online] 2010,Vol. 118, Issue 4-5, p197-202[1]