Signal transduction

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Current revision (12:18, 22 June 2023) (edit) (undo)
 
(29 intermediate revisions not shown.)
Line 1: Line 1:
<StructureSection load='' size='300' side='right' scene='Journal:JBSD:16/Cv/2' caption='Nicotinic Acetylcholine Receptor, PDB code [[2bg9]]'>
<StructureSection load='' size='300' side='right' scene='Journal:JBSD:16/Cv/2' caption='Nicotinic Acetylcholine Receptor, PDB code [[2bg9]]'>
-
'''Under development!'''
 
*[[Ligand]]
*[[Ligand]]
*[[Types of ligands]]
*[[Types of ligands]]
Line 7: Line 6:
*[[Growth factors]]
*[[Growth factors]]
*[[Neurotransmitters]]
*[[Neurotransmitters]]
 +
*[[Neuropeptides]]
 +
*[[Neuromodulators]]
*[[Receptor]]
*[[Receptor]]
*[[Ion channels]]
*[[Ion channels]]
Line 124: Line 125:
*[[Hydroxysteroid dehydrogenase]]
*[[Hydroxysteroid dehydrogenase]]
-
'''Sex steroids'''
+
'''[[Sex steroids]]'''
''[[Androgens]]''
''[[Androgens]]''
Line 140: Line 141:
*Cytochrome P450 3A4 ([[CYP3A4]])
*Cytochrome P450 3A4 ([[CYP3A4]])
-
[''[Estrogens]]''
+
''[[Estrogens]]''
There are three major endogenous estrogens that have estrogenic hormonal activity: estrone (E1), estradiol (E2), and estriol (E3). Estradiol, an estrane, is the most potent and prevalent. Another estrogen called estetrol (E4) is produced only during pregnancy.
There are three major endogenous estrogens that have estrogenic hormonal activity: estrone (E1), estradiol (E2), and estriol (E3). Estradiol, an estrane, is the most potent and prevalent. Another estrogen called estetrol (E4) is produced only during pregnancy.
Line 192: Line 193:
*[[Hydroxysteroid dehydrogenase]], 20-α HSD is involved in the control of progesterone level in pregnancy of mice. 17-β HSD is involved in the conversion of androstenedione to testosterone.
*[[Hydroxysteroid dehydrogenase]], 20-α HSD is involved in the control of progesterone level in pregnancy of mice. 17-β HSD is involved in the conversion of androstenedione to testosterone.
-
[[Vitamin D derivatives; secosteroids (open-ring steroids)]]
+
'''Vitamin D derivatives; secosteroids (open-ring steroids)'''
<scene name='89/895670/Cv/9'>Vitamin D</scene>.
<scene name='89/895670/Cv/9'>Vitamin D</scene>.
Line 208: Line 209:
The vitamin D nuclear receptor is a ligand-dependent transcription factor that controls multiple biological responses such as cell proliferation, immune responses, and bone mineralization. Numerous 1 α,25(OH)(2)D(3) analogues, which exhibit low calcemic side effects and/or antitumoral properties, have been synthesized. It was shown that <scene name='56/562378/3a3z/1'>the synthetic analogue (20S,23S)-epoxymethano-1α,25-dihydroxyvitamin D(3) (2a)</scene> acts as a 1α,25(OH)(2)D(3) superagonist and exhibits both antiproliferative and prodifferentiating properties in vitro. Using this information and on the basis of the crystal structures of human VDR ligand binding domain (hVDR LBD) bound to 1α,25(OH)(2)D(3), 2α-methyl-1α,25(OH)(2)D(3), or 2a, a novel analogue, 2α-methyl-(20S,23S)-epoxymethano-1α,25-dihydroxyvitamin D(3) (4a) was designed, in order to increase its transactivation potency.
The vitamin D nuclear receptor is a ligand-dependent transcription factor that controls multiple biological responses such as cell proliferation, immune responses, and bone mineralization. Numerous 1 α,25(OH)(2)D(3) analogues, which exhibit low calcemic side effects and/or antitumoral properties, have been synthesized. It was shown that <scene name='56/562378/3a3z/1'>the synthetic analogue (20S,23S)-epoxymethano-1α,25-dihydroxyvitamin D(3) (2a)</scene> acts as a 1α,25(OH)(2)D(3) superagonist and exhibits both antiproliferative and prodifferentiating properties in vitro. Using this information and on the basis of the crystal structures of human VDR ligand binding domain (hVDR LBD) bound to 1α,25(OH)(2)D(3), 2α-methyl-1α,25(OH)(2)D(3), or 2a, a novel analogue, 2α-methyl-(20S,23S)-epoxymethano-1α,25-dihydroxyvitamin D(3) (4a) was designed, in order to increase its transactivation potency.
- 
-
'''Signaling Pathways:'''
 
''ABA Signaling Pathway''
''ABA Signaling Pathway''
Line 216: Line 215:
*[[Protein Phosphatase 2C]]
*[[Protein Phosphatase 2C]]
*[[ABA-regulated SNRK2 Protein Kinase]]
*[[ABA-regulated SNRK2 Protein Kinase]]
 +
 +
'''[[Signaling Pathways]]:'''
 +
*[[Akt/PKB signaling pathway]]
 +
*[[AMPK signaling pathway]]
 +
*[[cAMP-dependent pathway]]
 +
*[[Eph/ephrin signaling pathway]]
 +
*[[Hedgehog signaling pathway]]
 +
*[[Insulin signal transduction pathway]]
 +
*[[JAK-STAT signaling pathway]]
 +
*[[MAPK/ERK pathway]]
 +
*[[mTOR signaling pathway]]
 +
*[[Nodal signaling pathway]]
 +
*[[Notch signaling pathway]]
 +
*[[PI3K/AKT/mTOR signaling pathway]]
 +
*[[TGF beta signaling pathway‎]]
 +
*[[TLR signaling pathway]]
 +
*[[VEGF signaling pathway]]
 +
*[[Wnt signaling pathway]]
 +
 +
[[MAPK/ERK pathway]]
 +
*[[Mitogen-activated protein kinase]]
 +
*[[Mitogen-activated protein kinase kinase]]
 +
*[[Mitogen-activated protein kinase kinase kinase]]
 +
*[[Michael Roberts/BIOL115/ERK2]]
 +
*[[UMass Chem 423 Student Projects 2011-2#p38 kinase|p38 MAPK (UMass Chem 423 Student Projects 2011-2)]]
'''[[Protein Kinases]]:'''
'''[[Protein Kinases]]:'''
Line 231: Line 255:
*[[Protein kinase C]]
*[[Protein kinase C]]
*The sensitization of [[TRPV1]] is thought to be connected to phosphorylation by [[protein kinase C]] and the cleavage of PIP2.
*The sensitization of [[TRPV1]] is thought to be connected to phosphorylation by [[protein kinase C]] and the cleavage of PIP2.
- 
-
''MAPK''
 
-
*[[Mitogen-activated protein kinase]]
 
-
*[[Mitogen-activated protein kinase kinase]]
 
-
*[[Mitogen-activated protein kinase kinase kinase]]
 
-
*[[Michael Roberts/BIOL115/ERK2]]
 
-
*[[UMass Chem 423 Student Projects 2011-2#p38 kinase|p38 MAPK (UMass Chem 423 Student Projects 2011-2)]]
 
''CAMP-dependent protein kinase''
''CAMP-dependent protein kinase''
Line 305: Line 322:
*[[Inositol 1,4,5-Trisphosphate Receptor]]
*[[Inositol 1,4,5-Trisphosphate Receptor]]
-
Paracrine signaling: fibroblast growth factor (FGF) family, Hedgehog family, Wnt family, and TGF-β superfamily
+
'''[[Paracrine signaling]]:'''
 +
Fibroblast growth factor (FGF) family, Hedgehog family, Wnt family, and TGF-β superfamily
-
[[Fibroblast growth factor]] and [[Fibroblast growth factor receptor]] (FGFR). FGFR belongs to Receptor tyrosine kinases, class V.
+
*[[Fibroblast growth factor]] and [[Fibroblast growth factor receptor]] (FGFR). FGFR belongs to Receptor tyrosine kinases, class V.
 +
*[[Hedgehog signaling pathway]]
 +
*[[TGF beta signaling pathway]]‎
 +
*[[Wnt signaling pathway]]
-
'''Sonic Hedgehog'''
+
'''[[Intracrine signaling]]'''
-
*[[Sonic Hedgehog]]
+
-
*[[Protein patched homolog 1]] (Ptch1) acts as receptor of Sonic Hedgehog protein (Shh) which is involved in formation of embryonic structures.
+
-
'''Ca2+ signalling processes'''
+
'''[[Ca2+ signalling processes]]'''
*[[Inositol 1,4,5-Trisphosphate Receptor]]
*[[Inositol 1,4,5-Trisphosphate Receptor]]
*[[Calcium-dependent protein kinase]]
*[[Calcium-dependent protein kinase]]
Line 329: Line 348:
'''GTPase'''
'''GTPase'''
*[[GTPase HRas]].
*[[GTPase HRas]].
- 
-
'''The Mitogen-activated protein kinase cascade'''
 
-
MAPKs are involved in directing cellular responses to a diverse array of stimuli, such as mitogens, osmotic stress, heat shock and proinflammatory cytokines. They regulate cell functions including proliferation, gene expression, differentiation, mitosis, cell survival, and apoptosis.
 
-
*[[Mitogen-activated protein kinase]]
 
-
*[[Mitogen-activated protein kinase kinase]]
 
-
*[[Mitogen-activated protein kinase kinase kinase]]
 
-
*[[Michael Roberts/BIOL115/ERK2]]
 
-
*[[UMass Chem 423 Student Projects 2011-2#p38 kinase|p38 MAPK (UMass Chem 423 Student Projects 2011-2)]]
 
'''Inflammatory response'''
'''Inflammatory response'''

Current revision

Nicotinic Acetylcholine Receptor, PDB code 2bg9

Drag the structure with the mouse to rotate

References

  1. Chatterjee S. Neutral sphingomyelinase: past, present and future. Chem Phys Lipids. 1999 Nov;102(1-2):79-96. PMID:11001563
  2. Barna TM, Khan H, Bruce NC, Barsukov I, Scrutton NS, Moody PC. Crystal structure of pentaerythritol tetranitrate reductase: "flipped" binding geometries for steroid substrates in different redox states of the enzyme. J Mol Biol. 2001 Jul 6;310(2):433-47. PMID:11428899 doi:10.1006/jmbi.2001.4779
  3. Tuteja G, Kaestner KH. SnapShot: forkhead transcription factors I. Cell. 2007 Sep 21;130(6):1160. PMID:17889656 doi:http://dx.doi.org/10.1016/j.cell.2007.09.005
  4. Kaiser G, Gerst F, Michael D, Berchtold S, Friedrich B, Strutz-Seebohm N, Lang F, Haring HU, Ullrich S. Regulation of forkhead box O1 (FOXO1) by protein kinase B and glucocorticoids: different mechanisms of induction of beta cell death in vitro. Diabetologia. 2013 Jul;56(7):1587-95. doi: 10.1007/s00125-013-2863-7. Epub 2013, Feb 23. PMID:23435785 doi:http://dx.doi.org/10.1007/s00125-013-2863-7
  5. Horwitz KB, Jackson TA, Bain DL, Richer JK, Takimoto GS, Tung L. Nuclear receptor coactivators and corepressors. Mol Endocrinol. 1996 Oct;10(10):1167-77. PMID:9121485 doi:http://dx.doi.org/10.1210/mend.10.10.9121485
  6. Arner ES, Holmgren A. Physiological functions of thioredoxin and thioredoxin reductase. Eur J Biochem. 2000 Oct;267(20):6102-9. PMID:11012661
  7. Prasad R, Chan LF, Hughes CR, Kaski JP, Kowalczyk JC, Savage MO, Peters CJ, Nathwani N, Clark AJ, Storr HL, Metherell LA. Thioredoxin Reductase 2 (TXNRD2) mutation associated with familial glucocorticoid deficiency (FGD). J Clin Endocrinol Metab. 2014 Aug;99(8):E1556-63. doi: 10.1210/jc.2013-3844. Epub, 2014 Mar 6. PMID:24601690 doi:http://dx.doi.org/10.1210/jc.2013-3844
  8. Arner ES, Holmgren A. Physiological functions of thioredoxin and thioredoxin reductase. Eur J Biochem. 2000 Oct;267(20):6102-9. PMID:11012661
  9. Fritz-Wolf K, Kehr S, Stumpf M, Rahlfs S, Becker K. Crystal structure of the human thioredoxin reductase-thioredoxin complex. Nat Commun. 2011 Jul 12;2:383. doi: 10.1038/ncomms1382. PMID:21750537 doi:10.1038/ncomms1382
  10. Murakami M, Nakatani Y, Tanioka T, Kudo I. Prostaglandin E synthase. Prostaglandins Other Lipid Mediat. 2002 Aug;68-69:383-99. PMID:12432931
  11. Kudo I, Murakami M. Prostaglandin E synthase, a terminal enzyme for prostaglandin E2 biosynthesis. J Biochem Mol Biol. 2005 Nov 30;38(6):633-8. PMID:16336776
  12. Luz JG, Antonysamy S, Kuklish SL, Condon B, Lee MR, Allison D, Yu XP, Chandrasekhar S, Backer R, Zhang A, Russell M, Chang SS, Harvey A, Sloan AV, Fisher MJ. Crystal Structures of mPGES-1 Inhibitor Complexes Form a Basis for the Rational Design of Potent Analgesic and Anti-Inflammatory Therapeutics. J Med Chem. 2015 May 20. PMID:25961169 doi:http://dx.doi.org/10.1021/acs.jmedchem.5b00330
  13. Frey FJ, Odermatt A, Frey BM. Glucocorticoid-mediated mineralocorticoid receptor activation and hypertension. Curr Opin Nephrol Hypertens. 2004 Jul;13(4):451-8. PMID:15199296
  14. Pujo L, Fagart J, Gary F, Papadimitriou DT, Claes A, Jeunemaitre X, Zennaro MC. Mineralocorticoid receptor mutations are the principal cause of renal type 1 pseudohypoaldosteronism. Hum Mutat. 2007 Jan;28(1):33-40. PMID:16972228 doi:10.1002/humu.20371
  15. Geller DS, Farhi A, Pinkerton N, Fradley M, Moritz M, Spitzer A, Meinke G, Tsai FT, Sigler PB, Lifton RP. Activating mineralocorticoid receptor mutation in hypertension exacerbated by pregnancy. Science. 2000 Jul 7;289(5476):119-23. PMID:10884226
  16. Lother A, Bergemann S, Kowalski J, Huck M, Gilsbach R, Bode C, Hein L. Inhibition of the cardiac myocyte mineralocorticoid receptor ameliorates doxorubicin-induced cardiotoxicity. Cardiovasc Res. 2018 Feb 1;114(2):282-290. doi: 10.1093/cvr/cvx078. PMID:28430882 doi:http://dx.doi.org/10.1093/cvr/cvx078
  17. Caprio M, Feve B, Claes A, Viengchareun S, Lombes M, Zennaro MC. Pivotal role of the mineralocorticoid receptor in corticosteroid-induced adipogenesis. FASEB J. 2007 Jul;21(9):2185-94. doi: 10.1096/fj.06-7970com. Epub 2007 Mar 23. PMID:17384139 doi:http://dx.doi.org/10.1096/fj.06-7970com
  18. Bledsoe RK, Madauss KP, Holt JA, Apolito CJ, Lambert MH, Pearce KH, Stanley TB, Stewart EL, Trump RP, Willson TM, Williams SP. A ligand-mediated hydrogen bond network required for the activation of the mineralocorticoid receptor. J Biol Chem. 2005 Sep 2;280(35):31283-93. Epub 2005 Jun 20. PMID:15967794 doi:http://dx.doi.org/10.1074/jbc.M504098200
  19. Bohl CE, Wu Z, Chen J, Mohler ML, Yang J, Hwang DJ, Mustafa S, Miller DD, Bell CE, Dalton JT. Effect of B-ring substitution pattern on binding mode of propionamide selective androgen receptor modulators. Bioorg Med Chem Lett. 2008 Oct 15;18(20):5567-70. Epub 2008 Sep 5. PMID:18805694 doi:10.1016/j.bmcl.2008.09.002
  20. Sarge KD, Murphy SP, Morimoto RI. Activation of heat shock gene transcription by heat shock factor 1 involves oligomerization, acquisition of DNA-binding activity, and nuclear localization and can occur in the absence of stress. Mol Cell Biol. 1993 Mar;13(3):1392-407. PMID:8441385
  21. Kondo N, Katsuno M, Adachi H, Minamiyama M, Doi H, Matsumoto S, Miyazaki Y, Iida M, Tohnai G, Nakatsuji H, Ishigaki S, Fujioka Y, Watanabe H, Tanaka F, Nakai A, Sobue G. Heat shock factor-1 influences pathological lesion distribution of polyglutamine-induced neurodegeneration. Nat Commun. 2013;4:1405. doi: 10.1038/ncomms2417. PMID:23360996 doi:http://dx.doi.org/10.1038/ncomms2417
  22. Ghosh, D., Griswold, J., Erman, M., Pangborn, W. " X-ray Structure of Human Aromatase Reveals An Androgen-Specific Active Site" Journal of Steroid Biochemistry and Molecular Biology. [Online] 2010,Vol. 118, Issue 4-5, p197-202[1]

Proteopedia Page Contributors and Editors (what is this?)

Alexander Berchansky

Personal tools