Receptor

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 7: Line 7:
These receptors are typically the targets of fast neurotransmitters such as acetylcholine (nicotinic) and GABA; activation of these receptors results in changes in ion movement across a membrane.
These receptors are typically the targets of fast neurotransmitters such as acetylcholine (nicotinic) and GABA; activation of these receptors results in changes in ion movement across a membrane.
*[[Ionotropic receptors]]
*[[Ionotropic receptors]]
-
**[[5-hydroxytryptamine receptor#Structural highlights/Specific Function of 5-HT3]]
+
*[[5-hydroxytryptamine receptor#Structural highlights/Specific Function of 5-HT3]]
-
**[[Journal:JBSD:16|The extracellular subunit interface of the 5-HT3 receptors: a computational alanine scanning mutagenesis study]]<ref>DOI 10.1080/07391102.2012.680029</ref>
+
*[[Journal:JBSD:16|The extracellular subunit interface of the 5-HT3 receptors: a computational alanine scanning mutagenesis study]]<ref>DOI 10.1080/07391102.2012.680029</ref>
-
**[[5-hydroxytryptamine receptor#5-HT3 receptor antagonists]]
+
*[[5-hydroxytryptamine receptor#5-HT3 receptor antagonists]]
 +
 
 +
'''5-HT3 receptor'''
 +
 
 +
The <scene name='71/716487/Default/1'>5-HT3 </scene> receptor is bullet-shaped and consists of five subunits (A-E) that form an oligomer. In the center of this pentamer of subunits is a ligand-gated ion channel full of water, which the five subunits enclose pseudo-symmetrically. Each subunit of the 5-HT3 receptor consists of three regions; the extracellular region, the transmembrane region, and the intracellular region<ref name="barnes">Barnes, N., Hales, T., Lummis, S., & Peters, J. (2009). The 5-HT3 receptor – the relationship between structure and function. Neuropharmacology, 273-284</ref>.
 +
 
 +
The <scene name='71/716487/Extracellular_region/1'>extracellular region</scene> is relatively large compared to the other two regions, and contains a short C-terminus and a larger N-terminus. The N-terminus of the extracellular region is where the ligand binding occurs, and therefore deals with the agonists and antagonists<ref name="perumal">Perumal, R., & Mahesh, R. (2006). Synthesis and biological evaluation of a novel structural type of serotonin 5-HT3 receptor antagonists. Bioorganic & Medicinal Chemistry Letters, 2769-2772.</ref>.
 +
These <scene name='71/716487/Binding_site/4'>binding sites</scene> are located between two bordering subunits, assembled from three alpha-helices of one subunit and three beta-strands from the other subunit. Such connection creates a binding pocket with a small, select number of residues from each subunit pointed into the binding pocket, as opposed to the large remainder of residues that are pointing <scene name='71/716487/Default/11'> away</scene> from the binding pocket<ref name="hassaine">Hassaine, G., Deluz, C., Grasso, L., Wyss, R., Tol, M., Hovius, R., . . . Nury, H. (2014). X-ray structure of the mouse serotonin 5-HT3 receptor. Nature, 276-281.</ref>. This binding pocket shrinks around agonists, encapsulating them, and widens around antagonists, repulsing them.
 +
 
 +
The <scene name='71/716487/Default/5'>transmembrane region</scene> is within the C-terminus region, and contains four alpha-helical domains within it (M1-M4) that stretch the length of this inner, transmembrane area. These four alpha-helical domains conduct the channel openings via ion selectivity, depending on both charge and size<ref name="hassaine" />. M2, the porous domain, contains rings of charged amino acids at both its start and its <scene name='71/716487/Default/10'>end</scene>, accounting for M2’s main contribution to ion selectivity. The M3 and M4 alpha-helices create a large <scene name='71/716487/Default/6'> loop</scene> with one another, thus assembling the <scene name='71/716487/Default/7'>intracellular region</scene><ref name="barnes" />.
'''The extracellular subunit interface of the 5-HT3 receptors: a computational alanine scanning mutagenesis study<ref>DOI 10.1080/07391102.2012.680029</ref>'''
'''The extracellular subunit interface of the 5-HT3 receptors: a computational alanine scanning mutagenesis study<ref>DOI 10.1080/07391102.2012.680029</ref>'''
Line 21: Line 30:
-
**[[Nicotinic Acetylcholine Receptor|Nicotinic Acetylcholine Receptors in general]]
+
*[[Nicotinic Acetylcholine Receptor|Nicotinic Acetylcholine Receptors in general]]
-
**[[Alpha-bungarotoxin]] is a nicotinic cholinergic antagonist that is found within the venom of ''Bungarus multicinctus'', a South-asian snake belonging to a group commonly known as kraits.
+
*[[Alpha-bungarotoxin]] is a nicotinic cholinergic antagonist that is found within the venom of ''Bungarus multicinctus'', a South-asian snake belonging to a group commonly known as kraits.
-
**[[Binding site of AChR]]
+
*[[Binding site of AChR]]
-
**[[Acetylcholine Receptor and its Reaction to Cobra Venom]]
+
*[[Acetylcholine Receptor and its Reaction to Cobra Venom]]
-
**[[Molecular Playground/Glutamate Receptor|AMPA glutamate receptor]] by [http://www.umass.edu/cbi/ University of Massachusetts Amherst Chemistry-Biology Interface Program] at UMass Amherst and on display at the [http://www.molecularplayground.org/ Molecular Playground].
+
*[[Molecular Playground/Glutamate Receptor|AMPA glutamate receptor]] by [http://www.umass.edu/cbi/ University of Massachusetts Amherst Chemistry-Biology Interface Program] at UMass Amherst and on display at the [http://www.molecularplayground.org/ Molecular Playground].
-
**[[Glutamate receptor (GluA2)]]
+
*[[Glutamate receptor (GluA2)]]
==G protein-linked (metabotropic) receptors==
==G protein-linked (metabotropic) receptors==

Revision as of 13:49, 13 April 2021

Nicotinic Acetylcholine Receptor, PDB code 2bg9

Drag the structure with the mouse to rotate

References

  1. De Rienzo F, Moura Barbosa AJ, Perez MA, Fernandes PA, Ramos MJ, Menziani MC. The extracellular subunit interface of the 5-HT(3) receptors: a computational alanine scanning mutagenesis study. J Biomol Struct Dyn. 2012 Jul;30(3):280-98. Epub 2012 Jun 12. PMID:22694192 doi:10.1080/07391102.2012.680029
  2. 2.0 2.1 Barnes, N., Hales, T., Lummis, S., & Peters, J. (2009). The 5-HT3 receptor – the relationship between structure and function. Neuropharmacology, 273-284
  3. Perumal, R., & Mahesh, R. (2006). Synthesis and biological evaluation of a novel structural type of serotonin 5-HT3 receptor antagonists. Bioorganic & Medicinal Chemistry Letters, 2769-2772.
  4. 4.0 4.1 Hassaine, G., Deluz, C., Grasso, L., Wyss, R., Tol, M., Hovius, R., . . . Nury, H. (2014). X-ray structure of the mouse serotonin 5-HT3 receptor. Nature, 276-281.
  5. De Rienzo F, Moura Barbosa AJ, Perez MA, Fernandes PA, Ramos MJ, Menziani MC. The extracellular subunit interface of the 5-HT(3) receptors: a computational alanine scanning mutagenesis study. J Biomol Struct Dyn. 2012 Jul;30(3):280-98. Epub 2012 Jun 12. PMID:22694192 doi:10.1080/07391102.2012.680029
  6. Moura Barbosa AJ, De Rienzo F, Ramos MJ, Menziani MC. Computational analysis of ligand recognition sites of homo- and heteropentameric 5-HT3 receptors. Eur J Med Chem. 2010 Nov;45(11):4746-60. Epub 2010 Jul 27. PMID:20724042 doi:10.1016/j.ejmech.2010.07.039
  7. Moreira IS, Fernandes PA, Ramos MJ. Computational alanine scanning mutagenesis--an improved methodological approach. J Comput Chem. 2007 Feb;28(3):644-54. PMID:17195156 doi:10.1002/jcc.20566
  8. De Rienzo F, Moura Barbosa AJ, Perez MA, Fernandes PA, Ramos MJ, Menziani MC. The extracellular subunit interface of the 5-HT(3) receptors: a computational alanine scanning mutagenesis study. J Biomol Struct Dyn. 2012 Jul;30(3):280-98. Epub 2012 Jun 12. PMID:22694192 doi:10.1080/07391102.2012.680029
  9. De Rienzo F, Del Cadia M, Menziani MC. A first step towards the understanding of the 5-HT(3) receptor subunit heterogeneity from a computational point of view. Phys Chem Chem Phys. 2012 Sep 28;14(36):12625-36. Epub 2012 Aug 9. PMID:22880201 doi:10.1039/c2cp41028a
  10. Segaliny AI, Tellez-Gabriel M, Heymann MF, Heymann D. Receptor tyrosine kinases: Characterisation, mechanism of action and therapeutic interests for bone cancers. J Bone Oncol. 2015 Jan 23;4(1):1-12. doi: 10.1016/j.jbo.2015.01.001. eCollection , 2015 Mar. PMID:26579483 doi:http://dx.doi.org/10.1016/j.jbo.2015.01.001
  11. Li MJ, Greenblatt HM, Dym O, Albeck S, Pais A, Gunanathan C, Milstein D, Degani H, Sussman JL. Structure of estradiol metal chelate and estrogen receptor complex: The basis for designing a new class of selective estrogen receptor modulators. J Med Chem. 2011 Apr 7. PMID:21473635 doi:10.1021/jm200192y

Proteopedia Page Contributors and Editors (what is this?)

Alexander Berchansky

Personal tools