Receptor

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 59: Line 59:
'''Domains'''
'''Domains'''
The subunits themselves are modular <ref>PMID: 7539962</ref>and the major domains are found in layers in the tetrameric structure.
The subunits themselves are modular <ref>PMID: 7539962</ref>and the major domains are found in layers in the tetrameric structure.
-
*The 'top' layer is composed of the <scene name='User:Wayne_Decatur/Sandbox_Glutamate_receptor/Atd_domain/4'>amino-terminal domain(ATD)</scene>
+
*The 'top' layer is composed of the <scene name='User:Wayne_Decatur/Sandbox_Glutamate_receptor/Atd_domain/4'>amino-terminal domain (ATD)</scene>
::This <scene name='User:Wayne_Decatur/Sandbox_Glutamate_receptor/Atd_gly/2'>extracellular domain is glycosylated</scene>.
::This <scene name='User:Wayne_Decatur/Sandbox_Glutamate_receptor/Atd_gly/2'>extracellular domain is glycosylated</scene>.
*<scene name='User:Wayne_Decatur/Sandbox_Glutamate_receptor/Lbd_domain/4'>The ligand-binding domain (LBD)</scene> participates directly in agonist/competitive antagonist binding, affects activation gating, and is the portion that forms the 'middle' layer.
*<scene name='User:Wayne_Decatur/Sandbox_Glutamate_receptor/Lbd_domain/4'>The ligand-binding domain (LBD)</scene> participates directly in agonist/competitive antagonist binding, affects activation gating, and is the portion that forms the 'middle' layer.
::<scene name='User:Wayne_Decatur/Sandbox_Glutamate_receptor/Lbd_zk1/2'>The competitive antagonist ZK200775 is bound to the LBD</scene> in the structure.
::<scene name='User:Wayne_Decatur/Sandbox_Glutamate_receptor/Lbd_zk1/2'>The competitive antagonist ZK200775 is bound to the LBD</scene> in the structure.
-
::The small molecule <scene name='User:Wayne_Decatur/Sandbox_Glutamate_receptor/Zk1_zoom/1'>ZK200775, a phosphonate quinoxalinedione AMPA antagonist</scene><ref>PMID: 9724812</ref>, was studied as a treatment for stroke because it had demonstrated neuroprotective efficacy in experimental models of stroke and tolerability in healthy volunteers; however, in a multicenter, double-blind, randomized, placebo-controlled phase II trial, it was found to have significant sedative effects in patients with acute stroke which precludes its further development as a neuroprotective agent<ref>PMID: 16131799</ref>.
+
::The <scene name='User:Wayne_Decatur/Sandbox_Glutamate_receptor/Zk1_zoom/1'>ZK200775, a phosphonate quinoxalinedione AMPA antagonist</scene><ref>PMID: 9724812</ref>, was studied as a treatment for stroke because it had demonstrated neuroprotective efficacy in experimental models of stroke and tolerability in healthy volunteers; however, in a multicenter, double-blind, randomized, placebo-controlled phase II trial, it was found to have significant sedative effects in patients with acute stroke which precludes its further development as a neuroprotective agent<ref>PMID: 16131799</ref>.
*<scene name='User:Wayne_Decatur/Sandbox_Glutamate_receptor/Tmd_domain/2'>The transmembrane domain (TMD)</scene> is the portion that forms the membrane-spanning on the 'bottom' of the solved structure.
*<scene name='User:Wayne_Decatur/Sandbox_Glutamate_receptor/Tmd_domain/2'>The transmembrane domain (TMD)</scene> is the portion that forms the membrane-spanning on the 'bottom' of the solved structure.
-
::To help give a better idea of how the glutamate receptor is oriented on the cell surface in the membrane lipid bilayer, <scene name='User:Wayne_Decatur/Sandbox_Glutamate_receptor/3kg2opm_mem/11'>a slab representative of hydrophobic core of the lipid bilayer</scene> as calculated by the [http://opm.phar.umich.edu/protein.php?pdbid=3kg2 Orientations of Proteins in Membranes database] (University of Michigan, USA) is shown with the red patch of spheres indicating the boundary of the hydrophobic core closet to the outside of the cell and the dark blue patch of spheres indicating the boundary closest to the inside of the cell.
+
::To help give a better idea of how the glutamate receptor is oriented on the cell surface in the membrane lipid bilayer, <scene name='User:Wayne_Decatur/Sandbox_Glutamate_receptor/3kg2opm_mem/11'>a slab representative of hydrophobic core of the lipid bilayer</scene> as calculated by the [http://opm.phar.umich.edu/protein.php?pdbid=3kg2 Orientations of Proteins in Membranes database] (University of Michigan, USA) is shown with the red patch of spheres indicating the boundary of the hydrophobic core closest to the outside of the cell and the dark blue patch of spheres indicating the boundary closest to the inside of the cell.
::[[Image:Opm_periplasmic_topology.gif]]
::[[Image:Opm_periplasmic_topology.gif]]
* The carboxy-terminal domain that plays a role in both receptor localization and regulation is not seen in the structure but would be below the transmembrane domain as it is cytoplasmic.
* The carboxy-terminal domain that plays a role in both receptor localization and regulation is not seen in the structure but would be below the transmembrane domain as it is cytoplasmic.
Line 71: Line 71:
'''Domain swapping between the subunits and symmetry mismatch between the domains'''
'''Domain swapping between the subunits and symmetry mismatch between the domains'''
-
*Unanticipated is the domain swapping and crossover that occurs between the subunits interactions. In order to discuss the remarkable swapping, it is best to <scene name='User:Wayne_Decatur/Sandbox_Glutamate_receptor/Default3kg2letter/4'>designate each subunit with a letter</scene>: <br>&nbsp;&nbsp;&nbsp; '''<span style="color:forestgreen">A</span>'''&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; '''<span style="color:red">B</span>'''&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; '''<span style="color:cornflowerblue">C</span>''' &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; '''<!--<span style="color:#FFFF80">D</span>-->D'''
+
*Unanticipated is the domain swapping and crossover that occurs between the subunits interactions. In order to discuss the remarkable swapping, it is best to <scene name='User:Wayne_Decatur/Sandbox_Glutamate_receptor/Default3kg2letter/4'>designate each subunit with a letter</scene>: <br>&nbsp;&nbsp;&nbsp; '''<span style="color:forestgreen">A</span>'''&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; '''<span style="color:red">B</span>'''&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; '''<span style="color:cornflowerblue">C</span>''' &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; '''D'''
*Considering each chain, there is crossover as the pairs of subunits seen in the ATD are swapped in the LBD.
*Considering each chain, there is crossover as the pairs of subunits seen in the ATD are swapped in the LBD.
Line 86: Line 86:
*The <scene name='User:Wayne_Decatur/Sandbox_Glutamate_receptor/Tmd_domain_4fold/2'>symmetry is an overall four-fold for the TMD</scene>. Thus, remarkably, the symmetry switches from an overall two-fold symmetry for the ATD and LBD to four-fold for the TMD.
*The <scene name='User:Wayne_Decatur/Sandbox_Glutamate_receptor/Tmd_domain_4fold/2'>symmetry is an overall four-fold for the TMD</scene>. Thus, remarkably, the symmetry switches from an overall two-fold symmetry for the ATD and LBD to four-fold for the TMD.
-
As a result of the swapping and symmetry mismatch, there is subunit non-equivalence; even though all the chains are the same chemically, there are two distinct conformations of the subunits. This means there are two matching pairs of subunits.
+
As a result of the swapping and symmetry mismatch, there is subunit non-equivalence; even though all the chains are the same chemically, there are 2 distinct conformations of the subunits. This means there are 2 matching pairs of subunits.
* <scene name='User:Wayne_Decatur/Sandbox_Glutamate_receptor/Ac3kg2letter/1'>A is equivalent to C</scene>
* <scene name='User:Wayne_Decatur/Sandbox_Glutamate_receptor/Ac3kg2letter/1'>A is equivalent to C</scene>
* <scene name='User:Wayne_Decatur/Sandbox_Glutamate_receptor/Bd3kg2letter/2'>B is equivalent to D</scene>
* <scene name='User:Wayne_Decatur/Sandbox_Glutamate_receptor/Bd3kg2letter/2'>B is equivalent to D</scene>
-
* <span style="color:forestgreen">Subunit '''A</span>''' is equivalent to <span style="color:cornflowerblue">Subunit '''C'''</span> (in the small structure window in this section). In the main window, a <scene name='User:Wayne_Decatur/Sandbox_Glutamate_receptor/Atocmorph/5' target='main2NDwindow'>morph showing the equivalency of the two subunits by rotating around the axis of their symmetry</scene>.
+
* <span style="color:forestgreen">Subunit '''A</span>''' is equivalent to <span style="color:cornflowerblue">Subunit '''C'''</span> (in the small structure window in this section). In the main window, a <scene name='User:Wayne_Decatur/Sandbox_Glutamate_receptor/Atocmorph/5' target='main2NDwindow'>morph showing the equivalency of the 2 subunits by rotating around the axis of their symmetry</scene>.
-
* <span style="color:red">Subunit '''B</span>''' is equivalent to Subunit '''D''' (in the small structure window in this section). <!--<span style="color:#FFFF80">Subunit '''D'''</span>(<--says 'Subunit D' in hard-to-read gold color matching the structure)--> In the main window, a <scene name='User:Wayne_Decatur/Sandbox_Glutamate_receptor/Btodmorph/5' target='main2NDwindow'>morph showing the equivalency of the two subunits by rotating around the axis of their symmetry</scene>.
+
* <span style="color:red">Subunit '''B</span>''' is equivalent to Subunit '''D''' (in the small structure window in this section). In the main window, a <scene name='User:Wayne_Decatur/Sandbox_Glutamate_receptor/Btodmorph/5' target='main2NDwindow'>morph showing the equivalency of the two subunits by rotating around the axis of their symmetry</scene>.
However, each of the subunit '''<span style="color:forestgreen">A</span>'''/<span style="color:cornflowerblue">'''C'''</span> group though is distinct from those of the <span style="color:red">'''B</span>'''/'''D''' group. Having established the two equivalent groups we can simplify the discussion of the relationship between the two pairs by focusing solely on comparing <span style="color:forestgreen">Subunit '''A'</span>''' and <span style="color:red">Subunit '''B</span>'''.<br>
However, each of the subunit '''<span style="color:forestgreen">A</span>'''/<span style="color:cornflowerblue">'''C'''</span> group though is distinct from those of the <span style="color:red">'''B</span>'''/'''D''' group. Having established the two equivalent groups we can simplify the discussion of the relationship between the two pairs by focusing solely on comparing <span style="color:forestgreen">Subunit '''A'</span>''' and <span style="color:red">Subunit '''B</span>'''.<br>
Line 110: Line 110:
::* '''<span style="color:lightskyblue">M4</span>'''
::* '''<span style="color:lightskyblue">M4</span>'''
-
*The segments shown again, <scene name='User:Wayne_Decatur/Sandbox_Glutamate_receptor/Transmem/4' target='main2NDwindow'>this time parallel to the four-fold axis</scene>.
+
*The segments shown again, <scene name='User:Wayne_Decatur/Sandbox_Glutamate_receptor/Transmem/4' target='main2NDwindow'>this time parallel to the 4-fold axis</scene>.
-
::There is <scene name='User:Wayne_Decatur/Sandbox_Glutamate_receptor/Transmemclosed/1'>no pore visible in the center</scene> consistent with the channel being in a closed state with the antagonist (ZK200775) bound to the LBD.
+
::There is <scene name='User:Wayne_Decatur/Sandbox_Glutamate_receptor/Transmemclosed/1'>no pore visible in the center</scene> consistent with the channel being in a closed state with the antagonist ZK200775 bound to the LBD.
::It is <scene name='User:Wayne_Decatur/Sandbox_Glutamate_receptor/M3_closed/3' target='main2NDwindow'>the tight helix crossing of specifically the M3 helices</scene> that occludes the channel. [BE PATIENT as a small surface is generated.]
::It is <scene name='User:Wayne_Decatur/Sandbox_Glutamate_receptor/M3_closed/3' target='main2NDwindow'>the tight helix crossing of specifically the M3 helices</scene> that occludes the channel. [BE PATIENT as a small surface is generated.]
-
::Note <scene name='User:Wayne_Decatur/Sandbox_Glutamate_receptor/M3_closed_top/1' target='main2NDwindow'>the differences between the conformations of the carboxy-termini ('top') of the subunit A/C and B/D M3 segments</scene>. This is in part is why the symmetry is only approximately four-fold and is one of the several intriguing observations in regard to symmetry for this macromolecule. In fact, the location of two-fold symmetry at the ends of M3 is just above the portion that spans the membrane and is close to the last region of the structure that doesn't show four-fold symmetry as abruptly below this point everything is four-fold symmetric.
+
::Note <scene name='User:Wayne_Decatur/Sandbox_Glutamate_receptor/M3_closed_top/1' target='main2NDwindow'>the differences between the conformations of the carboxy-termini ('top') of the subunit A/C and B/D M3 segments</scene>. This is in part is why the symmetry is only approximately four-fold and is one of the several intriguing observations in regard to symmetry for this macromolecule. In fact, the location of 2-fold symmetry at the ends of M3 is just above the portion that spans the membrane and is close to the last region of the structure that doesn't show four-fold symmetry as abruptly below this point everything is 4-fold symmetric.
*To better observe the contributions of each of the membrane segments to the subunit-subunit interactions, <scene name='User:Wayne_Decatur/Sandbox_Glutamate_receptor/Trans_surf/4' target='main2NDwindow'>the transmembrane domains of three subunits are shown in a surface representation with the segments M1-M4 of the fourth subunit shown as green cylinders</scene>. <nowiki>[</nowiki>Note: this scene generates a substantial surface which may take about a minute to calculate. Be patient.<nowiki>]</nowiki>
*To better observe the contributions of each of the membrane segments to the subunit-subunit interactions, <scene name='User:Wayne_Decatur/Sandbox_Glutamate_receptor/Trans_surf/4' target='main2NDwindow'>the transmembrane domains of three subunits are shown in a surface representation with the segments M1-M4 of the fourth subunit shown as green cylinders</scene>. <nowiki>[</nowiki>Note: this scene generates a substantial surface which may take about a minute to calculate. Be patient.<nowiki>]</nowiki>
Line 121: Line 121:
==G protein-linked (metabotropic) receptors==
==G protein-linked (metabotropic) receptors==
-
This is the largest family of receptors and includes the receptors for several hormones and slow transmitters(dopamine, metabotropic glutamate). They are composed of seven transmembrane alpha helices. The loops connecting the alpha helices form extracellular and intracellular domains. The binding-site for larger peptide ligands is usually located in the extracellular domain whereas the binding site for smaller non-peptide ligands is often located between the seven alpha helices and one extracellular loop. These receptors are coupled to different intracellular effector systems via G proteins
+
This is the largest family of receptors and includes the receptors for several hormones and slow transmitters (dopamine, metabotropic glutamate). They are composed of 7 transmembrane alpha helices. The loops connecting the alpha helices form extracellular and intracellular domains. The binding-site for larger peptide ligands is usually located in the extracellular domain whereas the binding site for smaller non-peptide ligands is often located between the seven alpha helices and one extracellular loop. These receptors are coupled to different intracellular effector systems via G proteins
*[[G protein-coupled receptor|G protein-coupled receptors]]
*[[G protein-coupled receptor|G protein-coupled receptors]]
**[[Neurotensin receptor]]
**[[Neurotensin receptor]]

Revision as of 11:37, 14 April 2021

Nicotinic Acetylcholine Receptor, PDB code 2bg9

Drag the structure with the mouse to rotate

References

  1. De Rienzo F, Moura Barbosa AJ, Perez MA, Fernandes PA, Ramos MJ, Menziani MC. The extracellular subunit interface of the 5-HT(3) receptors: a computational alanine scanning mutagenesis study. J Biomol Struct Dyn. 2012 Jul;30(3):280-98. Epub 2012 Jun 12. PMID:22694192 doi:10.1080/07391102.2012.680029
  2. 2.0 2.1 Barnes, N., Hales, T., Lummis, S., & Peters, J. (2009). The 5-HT3 receptor – the relationship between structure and function. Neuropharmacology, 273-284
  3. Perumal, R., & Mahesh, R. (2006). Synthesis and biological evaluation of a novel structural type of serotonin 5-HT3 receptor antagonists. Bioorganic & Medicinal Chemistry Letters, 2769-2772.
  4. 4.0 4.1 Hassaine, G., Deluz, C., Grasso, L., Wyss, R., Tol, M., Hovius, R., . . . Nury, H. (2014). X-ray structure of the mouse serotonin 5-HT3 receptor. Nature, 276-281.
  5. De Rienzo F, Moura Barbosa AJ, Perez MA, Fernandes PA, Ramos MJ, Menziani MC. The extracellular subunit interface of the 5-HT(3) receptors: a computational alanine scanning mutagenesis study. J Biomol Struct Dyn. 2012 Jul;30(3):280-98. Epub 2012 Jun 12. PMID:22694192 doi:10.1080/07391102.2012.680029
  6. Moura Barbosa AJ, De Rienzo F, Ramos MJ, Menziani MC. Computational analysis of ligand recognition sites of homo- and heteropentameric 5-HT3 receptors. Eur J Med Chem. 2010 Nov;45(11):4746-60. Epub 2010 Jul 27. PMID:20724042 doi:10.1016/j.ejmech.2010.07.039
  7. Moreira IS, Fernandes PA, Ramos MJ. Computational alanine scanning mutagenesis--an improved methodological approach. J Comput Chem. 2007 Feb;28(3):644-54. PMID:17195156 doi:10.1002/jcc.20566
  8. De Rienzo F, Moura Barbosa AJ, Perez MA, Fernandes PA, Ramos MJ, Menziani MC. The extracellular subunit interface of the 5-HT(3) receptors: a computational alanine scanning mutagenesis study. J Biomol Struct Dyn. 2012 Jul;30(3):280-98. Epub 2012 Jun 12. PMID:22694192 doi:10.1080/07391102.2012.680029
  9. De Rienzo F, Del Cadia M, Menziani MC. A first step towards the understanding of the 5-HT(3) receptor subunit heterogeneity from a computational point of view. Phys Chem Chem Phys. 2012 Sep 28;14(36):12625-36. Epub 2012 Aug 9. PMID:22880201 doi:10.1039/c2cp41028a
  10. Wo ZG, Oswald RE. Unraveling the modular design of glutamate-gated ion channels. Trends Neurosci. 1995 Apr;18(4):161-8. PMID:7539962
  11. Turski L, Huth A, Sheardown M, McDonald F, Neuhaus R, Schneider HH, Dirnagl U, Wiegand F, Jacobsen P, Ottow E. ZK200775: a phosphonate quinoxalinedione AMPA antagonist for neuroprotection in stroke and trauma. Proc Natl Acad Sci U S A. 1998 Sep 1;95(18):10960-5. PMID:9724812
  12. Walters MR, Kaste M, Lees KR, Diener HC, Hommel M, De Keyser J, Steiner H, Versavel M. The AMPA antagonist ZK 200775 in patients with acute ischaemic stroke: a double-blind, multicentre, placebo-controlled safety and tolerability study. Cerebrovasc Dis. 2005;20(5):304-9. Epub 2005 Aug 30. PMID:16131799 doi:10.1159/000087929
  13. Wo ZG, Oswald RE. Unraveling the modular design of glutamate-gated ion channels. Trends Neurosci. 1995 Apr;18(4):161-8. PMID:7539962
  14. Wood MW, VanDongen HM, VanDongen AM. Structural conservation of ion conduction pathways in K channels and glutamate receptors. Proc Natl Acad Sci U S A. 1995 May 23;92(11):4882-6. PMID:7761417
  15. Doyle DA, Morais Cabral J, Pfuetzner RA, Kuo A, Gulbis JM, Cohen SL, Chait BT, MacKinnon R. The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science. 1998 Apr 3;280(5360):69-77. PMID:9525859
  16. Segaliny AI, Tellez-Gabriel M, Heymann MF, Heymann D. Receptor tyrosine kinases: Characterisation, mechanism of action and therapeutic interests for bone cancers. J Bone Oncol. 2015 Jan 23;4(1):1-12. doi: 10.1016/j.jbo.2015.01.001. eCollection , 2015 Mar. PMID:26579483 doi:http://dx.doi.org/10.1016/j.jbo.2015.01.001
  17. Li MJ, Greenblatt HM, Dym O, Albeck S, Pais A, Gunanathan C, Milstein D, Degani H, Sussman JL. Structure of estradiol metal chelate and estrogen receptor complex: The basis for designing a new class of selective estrogen receptor modulators. J Med Chem. 2011 Apr 7. PMID:21473635 doi:10.1021/jm200192y

Proteopedia Page Contributors and Editors (what is this?)

Alexander Berchansky

Personal tools