Receptor

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 20: Line 20:
The <scene name='71/716487/Default/5'>transmembrane region</scene> is within the C-terminus region, and contains 4 α-helical domains within it (M1-M4) that stretch the length of this inner, transmembrane area. These 4 α-helical domains conduct the channel openings via ion selectivity, depending on both charge and size. M2, the porous domain, contains rings of charged amino acids at both its start and its <scene name='71/716487/Default/10'>end</scene>, accounting for M2’s main contribution to ion selectivity. The M3 and M4 α-helices create a large <scene name='71/716487/Default/6'> loop</scene> with one another, thus assembling the <scene name='71/716487/Default/7'>intracellular region</scene>.
The <scene name='71/716487/Default/5'>transmembrane region</scene> is within the C-terminus region, and contains 4 α-helical domains within it (M1-M4) that stretch the length of this inner, transmembrane area. These 4 α-helical domains conduct the channel openings via ion selectivity, depending on both charge and size. M2, the porous domain, contains rings of charged amino acids at both its start and its <scene name='71/716487/Default/10'>end</scene>, accounting for M2’s main contribution to ion selectivity. The M3 and M4 α-helices create a large <scene name='71/716487/Default/6'> loop</scene> with one another, thus assembling the <scene name='71/716487/Default/7'>intracellular region</scene>.
-
'''The extracellular subunit interface of the 5-HT3 receptors: a computational alanine scanning mutagenesis study<ref>DOI 10.1080/07391102.2012.680029</ref>'''
+
-
 
+
-
The serotonin type-3 receptor (5-HT3-R) is a cation selective transmembrane protein channel that belongs to the Cys–loop Ligand-Gated Ion Channel (LGIC) superfamily (http://www.ebi.ac.uk/compneur-srv/LGICdb/LGICdb.php), which also includes receptors for nicotinic acetylcholine (<scene name='Journal:JBSD:16/Cv/2'>nAChR</scene>, PDB code [[2bg9]]), &#947;-aminobutyric acid and glycine. 5-HT3-R is involved in signal transmission in the central and peripheral nervous system and its malfunctioning leads to neurodegenerative and psychiatric diseases, therefore it is an important target for drug design research. A few drugs active against 5-HT3-R are already on the market, such as, for example, palonosetron (http://en.wikipedia.org/wiki/Palonosetron) and granisetron (http://en.wikipedia.org/wiki/Granisetron).
+
-
The 5-HT3R is made of 5 monomers assembled in a <scene name='Journal:JBSD:16/Cv/4'>pseudo-symmetric pentameric shape</scene> to form an ion channel permeable to small ions (Na+, K+); each subunit contains 3 domains: an <scene name='Journal:JBSD:16/Cv/3'>intracellular portion, a transmembrane domain and an extracellular region</scene> (shown on the example of nAChR, [[2bg9]]). To date, 5 different 5-HT3-R subunits have been identified, the 5-HT3 A, B, C, D and E; however, only subunits A and B have been extensively characterized experimentally. The <scene name='Journal:JBSD:16/Cv/6'>ligand binding site</scene> of nAChR is located at the extracellular region, at the interface between 2 monomers (α-γ and α-δ; 2 identical α monomers, chains A and D, are colored in same color - lavender), called the principal and the complementary subunits.
+
-
The 3D structure of 5-HT3-R has not been experimentally solved yet; however, it has been obtained computationally by means of homology modelling techniques. (http://salilab.org/modeller/)
+
-
Thus, the <scene name='Journal:JBSD:16/Cv/7'>extracellular region of the 5HT3 subunits A and B</scene> are modelled by homology with the 3D structure of the nAChR subunit A ([[2bg9]]-A) and are used to assemble receptor structures as pseudo-symmetric pentamers made either of <scene name='Journal:JBSD:16/Cv/9'>five identical subunits A (homomeric 5-HT3A-R)</scene> or of <scene name='Journal:JBSD:16/Cv/10'>both subunits A and B (heteromeric 5-HT3A/B-R in the BBABA arrangement)</scene> in a still debated arrangement.<ref>PMID:20724042 </ref> Subunits <font color='magenta'><b>A</b></font> and <font color='red'><b>B</b></font> are colored in <font color='magenta'><b>magenta</b></font> and <font color='red'><b>red</b></font>, respectively.
+
-
A complete characterization of the extracellular moiety of the <scene name='Journal:JBSD:16/Cv/15'>dimer interface of the 5-HT3-R</scene> (AA dimer is shown, <span style="color:cyan;background-color:black;font-weight:bold;">principal subunit is colored in cyan</span> and <font color='blue'><b>complementary is in blue</b></font>, is obtained by the Computational Alanine Scanning Mutagenesis (CASM) approach <ref>PMID:17195156</ref>, which simulates the substitution, one by one, of all the amino acid residues at the subunit-subunit interfaces with an Ala, thus to assess the interface binding contribution of single residue side-chains. The <scene name='Journal:JBSD:16/Cv/16'>most relevant residues for interface stabilization</scene> are classified as “hot spots” that stabilize the interface by more than 4 kcal/mol and “warm spots” that contribute to interface stabilization by more than 2 kcal/mol. <scene name='Journal:JBSD:16/Cv/17'>Click here to see also the interface of complementary subunit.</scene> Interface residues are shown in spacefill representation, <font color='red'><b>hot spot residues are colored in red</b></font> and <span style="color:orange;background-color:black;font-weight:bold;">warm spots residues are are in orange</span>.
+
-
From this analysis the <scene name='Journal:JBSD:16/Cv/18'>important aromatic cluster</scene> located at the interface core and formed by residues W178 (principal subunit), Y68, Y83, W85 and Y148 (complementary subunit) is highlighted.<ref>DOI:10.1080/07391102.2012.680029</ref> In addition, 2 important groups of interface residues are probably involved in the coupling of <scene name='Journal:JBSD:16/Cv1/6'>agonist</scene> and <scene name='Journal:JBSD:16/Cv1/10'>antagonist</scene> binding to channel activation/inactivation: W116-H180-L179-W178-E124-F125 (principal subunit) and Y136-Y138-Y148-W85-(P150) (complementary subunit), where W178 and Y148 appear to be critical residues for the binding/activation mechanism. Finally, the <scene name='Journal:JBSD:16/Cv1/8'>comparison of the AA interface with the BB interface</scene> (<span style="color:cyan;background-color:black;font-weight:bold;">principal subunit of AA is colored in cyan</span>, <font color='darkmagenta'><b>principal subunit BB is colored in darkmagenta</b></font>, <font color='blue'><b>complementary subunit AA is in blue</b></font> and <font color='magenta'><b>complementary subunit BB is in magenta</b></font>) shows differences which could explain the reasons why the homopentamer 5-HT3B-R, if expressed, is not functional.<ref>DOI: 10.1039/C2CP41028A</ref>
+

Revision as of 07:59, 18 April 2021

Nicotinic Acetylcholine Receptor, PDB code 2bg9

Drag the structure with the mouse to rotate

References

  1. De Rienzo F, Moura Barbosa AJ, Perez MA, Fernandes PA, Ramos MJ, Menziani MC. The extracellular subunit interface of the 5-HT(3) receptors: a computational alanine scanning mutagenesis study. J Biomol Struct Dyn. 2012 Jul;30(3):280-98. Epub 2012 Jun 12. PMID:22694192 doi:10.1080/07391102.2012.680029
  2. Wo ZG, Oswald RE. Unraveling the modular design of glutamate-gated ion channels. Trends Neurosci. 1995 Apr;18(4):161-8. PMID:7539962
  3. Turski L, Huth A, Sheardown M, McDonald F, Neuhaus R, Schneider HH, Dirnagl U, Wiegand F, Jacobsen P, Ottow E. ZK200775: a phosphonate quinoxalinedione AMPA antagonist for neuroprotection in stroke and trauma. Proc Natl Acad Sci U S A. 1998 Sep 1;95(18):10960-5. PMID:9724812
  4. Walters MR, Kaste M, Lees KR, Diener HC, Hommel M, De Keyser J, Steiner H, Versavel M. The AMPA antagonist ZK 200775 in patients with acute ischaemic stroke: a double-blind, multicentre, placebo-controlled safety and tolerability study. Cerebrovasc Dis. 2005;20(5):304-9. Epub 2005 Aug 30. PMID:16131799 doi:10.1159/000087929
  5. Wo ZG, Oswald RE. Unraveling the modular design of glutamate-gated ion channels. Trends Neurosci. 1995 Apr;18(4):161-8. PMID:7539962
  6. Wood MW, VanDongen HM, VanDongen AM. Structural conservation of ion conduction pathways in K channels and glutamate receptors. Proc Natl Acad Sci U S A. 1995 May 23;92(11):4882-6. PMID:7761417
  7. Doyle DA, Morais Cabral J, Pfuetzner RA, Kuo A, Gulbis JM, Cohen SL, Chait BT, MacKinnon R. The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science. 1998 Apr 3;280(5360):69-77. PMID:9525859
  8. Segaliny AI, Tellez-Gabriel M, Heymann MF, Heymann D. Receptor tyrosine kinases: Characterisation, mechanism of action and therapeutic interests for bone cancers. J Bone Oncol. 2015 Jan 23;4(1):1-12. doi: 10.1016/j.jbo.2015.01.001. eCollection , 2015 Mar. PMID:26579483 doi:http://dx.doi.org/10.1016/j.jbo.2015.01.001
  9. Li MJ, Greenblatt HM, Dym O, Albeck S, Pais A, Gunanathan C, Milstein D, Degani H, Sussman JL. Structure of estradiol metal chelate and estrogen receptor complex: The basis for designing a new class of selective estrogen receptor modulators. J Med Chem. 2011 Apr 7. PMID:21473635 doi:10.1021/jm200192y

Proteopedia Page Contributors and Editors (what is this?)

Alexander Berchansky

Personal tools