Receptor

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 60: Line 60:
<scene name='43/438522/Cv/7'>Ligand binding cavity with antagonist citrulline, receptor surface is shown</scene>.
<scene name='43/438522/Cv/7'>Ligand binding cavity with antagonist citrulline, receptor surface is shown</scene>.
-
 
+
*[[Tutorial: The opioid receptor, a molecular switch]]
*[[Mu Opioid Receptor Bound to a Morphinan Antagonist]]
*[[Mu Opioid Receptor Bound to a Morphinan Antagonist]]
In this crystal structure of the μ opioid receptor it is <scene name='52/520489/Ligand_pocket/2'>bound to β-funaltrexamine</scene> (β-FNA), a close relative of morphine that is bound in the pocket.
In this crystal structure of the μ opioid receptor it is <scene name='52/520489/Ligand_pocket/2'>bound to β-funaltrexamine</scene> (β-FNA), a close relative of morphine that is bound in the pocket.
Line 73: Line 73:
*[[Delta opioid receptor|The '''δ-opioid receptor''' binds enkephalins]]
*[[Delta opioid receptor|The '''δ-opioid receptor''' binds enkephalins]]
Opioid receptors typically have two big portions: the upper portion, zoomed in here with <scene name='71/715422/Sceneactivesite/1'>active site</scene> shown in indigo, that is ligand specific and recognizes a particular ligand, and the lower portion which is highly conserved amongst all receptors <ref>doi: 10.1038/nature11111</ref>. When <scene name='71/715422/Sceneligand/1'>Naltrindole</scene> approaches delta opioid receptor, it is distinguished by the high hydrophobic interaction between the indole group on the ligand and leucine 300 on the receptor. As it glides deeper into the binding site facilitated by the hydrophobic interaction, the hydroxyl group of the tyrosine-like phenol group hydrogen bonds with water molecules which are hydrogen bound to a critical histidine 248. This holds the ligand by having both the phenol group and histidine anchored by a water molecule. The water molecules within the binding pocket flank both the ligand and receptor, serving almost as a scaffolding on which for both components to act. Adjacent to the phenol group, the oxygen of an ether is hydrogen bound to tyrosine 129 of the receptor. On the opposite side of the binding site, aspartic acid 128 forms a salt bridge with the charged amino group on the ligand. The rest of the ligand maintains hydrophobic contact with non-polar residues of the binding site. The phenol to water interaction is a conserved interaction between many opioid receptors and their respective ligands as evidenced by many natural antagonists having a tyrosine that interacts with a water molecule in a similar fashion <ref>doi: 10.1038/nature11111</ref>.
Opioid receptors typically have two big portions: the upper portion, zoomed in here with <scene name='71/715422/Sceneactivesite/1'>active site</scene> shown in indigo, that is ligand specific and recognizes a particular ligand, and the lower portion which is highly conserved amongst all receptors <ref>doi: 10.1038/nature11111</ref>. When <scene name='71/715422/Sceneligand/1'>Naltrindole</scene> approaches delta opioid receptor, it is distinguished by the high hydrophobic interaction between the indole group on the ligand and leucine 300 on the receptor. As it glides deeper into the binding site facilitated by the hydrophobic interaction, the hydroxyl group of the tyrosine-like phenol group hydrogen bonds with water molecules which are hydrogen bound to a critical histidine 248. This holds the ligand by having both the phenol group and histidine anchored by a water molecule. The water molecules within the binding pocket flank both the ligand and receptor, serving almost as a scaffolding on which for both components to act. Adjacent to the phenol group, the oxygen of an ether is hydrogen bound to tyrosine 129 of the receptor. On the opposite side of the binding site, aspartic acid 128 forms a salt bridge with the charged amino group on the ligand. The rest of the ligand maintains hydrophobic contact with non-polar residues of the binding site. The phenol to water interaction is a conserved interaction between many opioid receptors and their respective ligands as evidenced by many natural antagonists having a tyrosine that interacts with a water molecule in a similar fashion <ref>doi: 10.1038/nature11111</ref>.
-
*[[Tutorial: The opioid receptor, a molecular switch]]
+
 
*[[Orexin and Orexin receptor]]
*[[Orexin and Orexin receptor]]
The <scene name='77/777976/Cv/4'>Suvorexant (Belsomra) binding pocket is open to the extracellular space</scene> through a constricted solvent-accessible channel. A <scene name='77/777976/Cv/5'>complex network of electrostatic interactions includes salt bridges between the protein and the drug, on both sides of the entry channel</scene><ref>PMID:25533960</ref>.
The <scene name='77/777976/Cv/4'>Suvorexant (Belsomra) binding pocket is open to the extracellular space</scene> through a constricted solvent-accessible channel. A <scene name='77/777976/Cv/5'>complex network of electrostatic interactions includes salt bridges between the protein and the drug, on both sides of the entry channel</scene><ref>PMID:25533960</ref>.

Revision as of 13:33, 20 April 2021

Nicotinic Acetylcholine Receptor, PDB code 2bg9

Drag the structure with the mouse to rotate

References

  1. De Rienzo F, Moura Barbosa AJ, Perez MA, Fernandes PA, Ramos MJ, Menziani MC. The extracellular subunit interface of the 5-HT(3) receptors: a computational alanine scanning mutagenesis study. J Biomol Struct Dyn. 2012 Jul;30(3):280-98. Epub 2012 Jun 12. PMID:22694192 doi:10.1080/07391102.2012.680029
  2. Krumm BE, White JF, Shah P, Grisshammer R. Structural prerequisites for G-protein activation by the neurotensin receptor. Nat Commun. 2015 Jul 24;6:7895. doi: 10.1038/ncomms8895. PMID:26205105 doi:http://dx.doi.org/10.1038/ncomms8895
  3. Granier S, Manglik A, Kruse AC, Kobilka TS, Thian FS, Weis WI, Kobilka BK. Structure of the delta-opioid receptor bound to naltrindole. Nature. 2012 May 16;485(7398):400-4. doi: 10.1038/nature11111. PMID:22596164 doi:10.1038/nature11111
  4. Granier S, Manglik A, Kruse AC, Kobilka TS, Thian FS, Weis WI, Kobilka BK. Structure of the delta-opioid receptor bound to naltrindole. Nature. 2012 May 16;485(7398):400-4. doi: 10.1038/nature11111. PMID:22596164 doi:10.1038/nature11111
  5. Yin J, Mobarec JC, Kolb P, Rosenbaum DM. Crystal structure of the human OX orexin receptor bound to the insomnia drug suvorexant. Nature. 2014 Dec 22. doi: 10.1038/nature14035. PMID:25533960 doi:http://dx.doi.org/10.1038/nature14035
  6. Segaliny AI, Tellez-Gabriel M, Heymann MF, Heymann D. Receptor tyrosine kinases: Characterisation, mechanism of action and therapeutic interests for bone cancers. J Bone Oncol. 2015 Jan 23;4(1):1-12. doi: 10.1016/j.jbo.2015.01.001. eCollection , 2015 Mar. PMID:26579483 doi:http://dx.doi.org/10.1016/j.jbo.2015.01.001
  7. Li MJ, Greenblatt HM, Dym O, Albeck S, Pais A, Gunanathan C, Milstein D, Degani H, Sussman JL. Structure of estradiol metal chelate and estrogen receptor complex: The basis for designing a new class of selective estrogen receptor modulators. J Med Chem. 2011 Apr 7. PMID:21473635 doi:10.1021/jm200192y

Proteopedia Page Contributors and Editors (what is this?)

Alexander Berchansky

Personal tools