Receptor

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 49: Line 49:
This is the largest family of receptors and includes the receptors for several hormones and slow transmitters (dopamine, metabotropic glutamate). They are composed of 7 transmembrane alpha helices. The loops connecting the alpha helices form extracellular and intracellular domains. The binding-site for larger peptide ligands is usually located in the extracellular domain whereas the binding site for smaller non-peptide ligands is often located between the seven alpha helices and one extracellular loop. These receptors are coupled to different intracellular effector systems via G proteins
This is the largest family of receptors and includes the receptors for several hormones and slow transmitters (dopamine, metabotropic glutamate). They are composed of 7 transmembrane alpha helices. The loops connecting the alpha helices form extracellular and intracellular domains. The binding-site for larger peptide ligands is usually located in the extracellular domain whereas the binding site for smaller non-peptide ligands is often located between the seven alpha helices and one extracellular loop. These receptors are coupled to different intracellular effector systems via G proteins
*[[G protein-coupled receptor|G protein-coupled receptors]]
*[[G protein-coupled receptor|G protein-coupled receptors]]
-
*[[Neurotensin receptor]]
 
-
Like other G protein-coupled receptors, NTSR1 is composed of 3 distinct regions. An <scene name='72/727765/Overall_structure/5'>extracellular binding site</scene> where neurotensin binds and causes a conformational change of the protein. A region containing <scene name='73/733990/Overall/1'>7 transmembrane alpha helices</scene> (PDB code:[http://www.rcsb.org/pdb/explore/explore.do?structureId=4GRV 4GRV)] that transduce the signal from the extracellular side of the cell membrane to the intracellular side. Lastly, an intracellular region that when activated by a conformational change in the protein activates a [https://en.wikipedia.org/wiki/G_protein G-protein] associated with this receptor.
 
- 
-
The <scene name='72/721547/Hydrophobic_binding_pocket/6'>hydrophobic binding pocket</scene> in NTSR1 is located at the top of the protein (Figure 1). NTSR1 also contains an '''[https://en.wikipedia.org/wiki/Allosteric_regulation allosteric]''' <scene name='72/721548/Na_bind_pocket/13'>sodium binding pocket</scene>, which is located directly beneath the ligand binding pocket and the two pockets, which are separated by the residue <scene name='72/721548/Trp321/1'>Trp321</scene><ref name="SPGP">PMID:26205105</ref>. NTSR1 has been mutated to exist in both <scene name='72/721548/Ntsr1-elf/6'>active</scene> and <scene name='72/721547/Ntsr1-gw5/8'>active-like</scene> states.
 
- 
-
*[[CXC chemokine receptor type 4]]
 
-
<scene name='43/438522/Cv/6'>Ligand binding cavity with antagonist citrulline</scene> (PDB code [[3oe0]]).
 
- 
-
<scene name='43/438522/Cv/9'>Ligand binding cavity with antagonist citrulline, receptor is in spacefill representation</scene>.
 
- 
-
<scene name='43/438522/Cv/7'>Ligand binding cavity with antagonist citrulline, receptor surface is shown</scene>.
 
*[[Tutorial: The opioid receptor, a molecular switch]]
*[[Tutorial: The opioid receptor, a molecular switch]]
Line 105: Line 94:
*[[Delta opioid receptor|The '''δ-opioid receptor''' binds enkephalins]]
*[[Delta opioid receptor|The '''δ-opioid receptor''' binds enkephalins]]
Opioid receptors typically have two big portions: the upper portion, zoomed in here with <scene name='71/715422/Sceneactivesite/1'>active site</scene> shown in indigo, that is ligand specific and recognizes a particular ligand, and the lower portion which is highly conserved amongst all receptors <ref>doi: 10.1038/nature11111</ref>. When <scene name='71/715422/Sceneligand/1'>Naltrindole</scene> approaches delta opioid receptor, it is distinguished by the high hydrophobic interaction between the indole group on the ligand and leucine 300 on the receptor. As it glides deeper into the binding site facilitated by the hydrophobic interaction, the hydroxyl group of the tyrosine-like phenol group hydrogen bonds with water molecules which are hydrogen bound to a critical histidine 248. This holds the ligand by having both the phenol group and histidine anchored by a water molecule. The water molecules within the binding pocket flank both the ligand and receptor, serving almost as a scaffolding on which for both components to act. Adjacent to the phenol group, the oxygen of an ether is hydrogen bound to tyrosine 129 of the receptor. On the opposite side of the binding site, aspartic acid 128 forms a salt bridge with the charged amino group on the ligand. The rest of the ligand maintains hydrophobic contact with non-polar residues of the binding site. The phenol to water interaction is a conserved interaction between many opioid receptors and their respective ligands as evidenced by many natural antagonists having a tyrosine that interacts with a water molecule in a similar fashion <ref>doi: 10.1038/nature11111</ref>.
Opioid receptors typically have two big portions: the upper portion, zoomed in here with <scene name='71/715422/Sceneactivesite/1'>active site</scene> shown in indigo, that is ligand specific and recognizes a particular ligand, and the lower portion which is highly conserved amongst all receptors <ref>doi: 10.1038/nature11111</ref>. When <scene name='71/715422/Sceneligand/1'>Naltrindole</scene> approaches delta opioid receptor, it is distinguished by the high hydrophobic interaction between the indole group on the ligand and leucine 300 on the receptor. As it glides deeper into the binding site facilitated by the hydrophobic interaction, the hydroxyl group of the tyrosine-like phenol group hydrogen bonds with water molecules which are hydrogen bound to a critical histidine 248. This holds the ligand by having both the phenol group and histidine anchored by a water molecule. The water molecules within the binding pocket flank both the ligand and receptor, serving almost as a scaffolding on which for both components to act. Adjacent to the phenol group, the oxygen of an ether is hydrogen bound to tyrosine 129 of the receptor. On the opposite side of the binding site, aspartic acid 128 forms a salt bridge with the charged amino group on the ligand. The rest of the ligand maintains hydrophobic contact with non-polar residues of the binding site. The phenol to water interaction is a conserved interaction between many opioid receptors and their respective ligands as evidenced by many natural antagonists having a tyrosine that interacts with a water molecule in a similar fashion <ref>doi: 10.1038/nature11111</ref>.
 +
 +
*[[Neurotensin receptor]]
 +
Like other G protein-coupled receptors, NTSR1 is composed of 3 distinct regions. An <scene name='72/727765/Overall_structure/5'>extracellular binding site</scene> where neurotensin binds and causes a conformational change of the protein. A region containing <scene name='73/733990/Overall/1'>7 transmembrane alpha helices</scene> (PDB code:[http://www.rcsb.org/pdb/explore/explore.do?structureId=4GRV 4GRV)] that transduce the signal from the extracellular side of the cell membrane to the intracellular side. Lastly, an intracellular region that when activated by a conformational change in the protein activates a [https://en.wikipedia.org/wiki/G_protein G-protein] associated with this receptor.
 +
 +
The <scene name='72/721547/Hydrophobic_binding_pocket/6'>hydrophobic binding pocket</scene> in NTSR1 is located at the top of the protein (Figure 1). NTSR1 also contains an '''[https://en.wikipedia.org/wiki/Allosteric_regulation allosteric]''' <scene name='72/721548/Na_bind_pocket/13'>sodium binding pocket</scene>, which is located directly beneath the ligand binding pocket and the two pockets, which are separated by the residue <scene name='72/721548/Trp321/1'>Trp321</scene><ref name="SPGP">PMID:26205105</ref>. NTSR1 has been mutated to exist in both <scene name='72/721548/Ntsr1-elf/6'>active</scene> and <scene name='72/721547/Ntsr1-gw5/8'>active-like</scene> states.
 +
 +
*[[CXC chemokine receptor type 4]]
 +
<scene name='43/438522/Cv/6'>Ligand binding cavity with antagonist citrulline</scene> (PDB code [[3oe0]]).
 +
 +
<scene name='43/438522/Cv/9'>Ligand binding cavity with antagonist citrulline, receptor is in spacefill representation</scene>.
 +
 +
<scene name='43/438522/Cv/7'>Ligand binding cavity with antagonist citrulline, receptor surface is shown</scene>.
*[[Orexin and Orexin receptor]]
*[[Orexin and Orexin receptor]]

Revision as of 13:40, 20 April 2021

Nicotinic Acetylcholine Receptor, PDB code 2bg9

Drag the structure with the mouse to rotate

References

  1. De Rienzo F, Moura Barbosa AJ, Perez MA, Fernandes PA, Ramos MJ, Menziani MC. The extracellular subunit interface of the 5-HT(3) receptors: a computational alanine scanning mutagenesis study. J Biomol Struct Dyn. 2012 Jul;30(3):280-98. Epub 2012 Jun 12. PMID:22694192 doi:10.1080/07391102.2012.680029
  2. Granier S, Manglik A, Kruse AC, Kobilka TS, Thian FS, Weis WI, Kobilka BK. Structure of the delta-opioid receptor bound to naltrindole. Nature. 2012 May 16;485(7398):400-4. doi: 10.1038/nature11111. PMID:22596164 doi:10.1038/nature11111
  3. Granier S, Manglik A, Kruse AC, Kobilka TS, Thian FS, Weis WI, Kobilka BK. Structure of the delta-opioid receptor bound to naltrindole. Nature. 2012 May 16;485(7398):400-4. doi: 10.1038/nature11111. PMID:22596164 doi:10.1038/nature11111
  4. Krumm BE, White JF, Shah P, Grisshammer R. Structural prerequisites for G-protein activation by the neurotensin receptor. Nat Commun. 2015 Jul 24;6:7895. doi: 10.1038/ncomms8895. PMID:26205105 doi:http://dx.doi.org/10.1038/ncomms8895
  5. Yin J, Mobarec JC, Kolb P, Rosenbaum DM. Crystal structure of the human OX orexin receptor bound to the insomnia drug suvorexant. Nature. 2014 Dec 22. doi: 10.1038/nature14035. PMID:25533960 doi:http://dx.doi.org/10.1038/nature14035
  6. Segaliny AI, Tellez-Gabriel M, Heymann MF, Heymann D. Receptor tyrosine kinases: Characterisation, mechanism of action and therapeutic interests for bone cancers. J Bone Oncol. 2015 Jan 23;4(1):1-12. doi: 10.1016/j.jbo.2015.01.001. eCollection , 2015 Mar. PMID:26579483 doi:http://dx.doi.org/10.1016/j.jbo.2015.01.001
  7. Li MJ, Greenblatt HM, Dym O, Albeck S, Pais A, Gunanathan C, Milstein D, Degani H, Sussman JL. Structure of estradiol metal chelate and estrogen receptor complex: The basis for designing a new class of selective estrogen receptor modulators. J Med Chem. 2011 Apr 7. PMID:21473635 doi:10.1021/jm200192y

Proteopedia Page Contributors and Editors (what is this?)

Alexander Berchansky

Personal tools