Receptor

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 113: Line 113:
*[[Human Follicle-Stimulating Hormone Complexed with its Receptor]]
*[[Human Follicle-Stimulating Hormone Complexed with its Receptor]]
*[[GPR40]]
*[[GPR40]]
-
Like most G-protein coupled receptors, hGPR40 contains <scene name='72/721541/Top_view_transmembrane_helices/2'>7 transmembrane helices</scene> (<scene name='72/721541/Top_view_transmembrane_helices/1'>top view of TM helices</scene>). To obtain a crystal structure of the protein, 4 <scene name='72/721541/Stabilizing_mutations/4'>stabilizing mutations</scene> (<scene name='72/721541/L42a/3'>L42A</scene>, <scene name='72/721541/F88a/4'>F88A</scene>, <scene name='72/721541/G103a/3'>G103A</scene>, <scene name='72/721541/Y202f/3'>Y202F</scene>) were made to increase the expression and thermal stability of the protein. These mutations did not significantly impact the enzyme's binding affinity with a known agonist TAK-875. <scene name='72/721541/Lysozyme_crimson/2'>T4 Lysozyme</scene> (in crimson) was also added to intracellular loop 3 to aid in the formation of crystals. T4 Lysozyme had little effect on TAK-875 binding.<ref name="Srivastava"/>
+
Like most G-protein coupled receptors, hGPR40 contains <scene name='72/721541/Top_view_transmembrane_helices/2'>7 transmembrane helices</scene> (<scene name='72/721541/Top_view_transmembrane_helices/1'>top view of TM helices</scene>). To obtain a crystal structure of the protein, 4 <scene name='72/721541/Stabilizing_mutations/4'>stabilizing mutations</scene> (<scene name='72/721541/L42a/3'>L42A</scene>, <scene name='72/721541/F88a/4'>F88A</scene>, <scene name='72/721541/G103a/3'>G103A</scene>, <scene name='72/721541/Y202f/3'>Y202F</scene>) were made to increase the expression and thermal stability of the protein. These mutations did not significantly impact the enzyme's binding affinity with a known agonist TAK-875. <scene name='72/721541/Lysozyme_crimson/2'>T4 Lysozyme</scene> (in crimson) was also added to intracellular loop 3 to aid in the formation of crystals.
-
While there is relatively low sequence identity between hGPR40 and peptide-binding and [https://en.wikipedia.org/wiki/Opioid_receptor opioid GPCRs], they do share structural similarities such as a conserved <scene name='72/727085/Hairpin_loop/4'>hairpin loop</scene> motif on <scene name='72/727085/Ecl2/4'>extracellular loop 2 </scene>(ECL2).<ref name="Srivastava"/> In addition, a conserved <scene name='72/727085/Disulfide/3'>disulphide bond</scene> is formed between transmembrane helix 3 (Cys 79) and the C-terminus of ECL2 (Cys170).<ref name="Srivastava"/> Compared to peptide-binding and opioid GPCRs, which have distinctive [https://en.wikipedia.org/wiki/Beta_sheet β-sheets] spanning from transmembrane helix 4 to 5, hGPR40 possesses a shorter B-sheet-like region, which has [http://proteopedia.org/wiki/index.php/Image:Beta-like_factors_of_hGPR40_ECL2.png low B-factors].<ref name="Srivastava"/> This reflects the low mobility of the region that limits the overall flexibility of the adjacent portion of ECL2 between Leu171 and Asp175.<ref name="Srivastava"/> A unique feature of hGPR40 is the presence of an additional 13 residues (Pro147 to Gly159) on ECL2, which is absent on all the other peptide/opioid receptors.<ref name="Srivastava"/> These extra residues form a separate <scene name='72/727085/Auxiliary_loop/3'>auxiliary loop</scene> between the B-sheet-like region and transmembrane 4. Together, the auxiliary loop and ECL2 of hGPR40 function as a <scene name='72/727085/Ecl2_cap/3'>roof </scene> over the canonical binding site covering it from the central extracellular region.<ref name="Srivastava"/>
+
While there is relatively low sequence identity between hGPR40 and peptide-binding and opioid GPCRs, they do share structural similarities such as a conserved <scene name='72/727085/Hairpin_loop/4'>hairpin loop</scene> motif on <scene name='72/727085/Ecl2/4'>extracellular loop 2 </scene>(ECL2). In addition, a conserved <scene name='72/727085/Disulfide/3'>disulphide bond</scene> is formed between transmembrane helix 3 (Cys 79) and the C-terminus of ECL2 (Cys170). Compared to peptide-binding and opioid GPCRs, which have distinctive β-sheets spanning from transmembrane helix 4 to 5, hGPR40 possesses a shorter B-sheet-like region, which has low B-factors. This reflects the low mobility of the region that limits the overall flexibility of the adjacent portion of ECL2 between Leu171 and Asp175. A unique feature of hGPR40 is the presence of an additional 13 residues (Pro147 to Gly159) on ECL2, which is absent on all the other peptide/opioid receptors. These extra residues form a separate <scene name='72/727085/Auxiliary_loop/3'>auxiliary loop</scene> between the B-sheet-like region and transmembrane 4. Together, the auxiliary loop and ECL2 of hGPR40 function as a <scene name='72/727085/Ecl2_cap/3'>roof </scene> over the canonical binding site covering it from the central extracellular region.
-
The canonical binding pocket for many other GPCRs is solvent exposed and centrally located between the transmembrane helices allowing ligands to directly bind from the extracellular space.<ref name="Srivastava"/> However, because <scene name='72/727085/Ecl2/4'>ECL2</scene> acts as a roof to this canonical binding site, it inhibits ligands from entering directly from the extracellular region. Instead, the highly lipophilic nature of hGPRC40’s ligands allow it to enter a <scene name='72/727085/Hgpr40_entry/2'>noncanonical binding pocket </scene> between TM3 and TM4 by moving through the lipid bilayer.<ref name="Srivastava"/>
+
The canonical binding pocket for many other GPCRs is solvent exposed and centrally located between the transmembrane helices allowing ligands to directly bind from the extracellular space. However, because <scene name='72/727085/Ecl2/4'>ECL2</scene> acts as a roof to this canonical binding site, it inhibits ligands from entering directly from the extracellular region. Instead, the highly lipophilic nature of hGPRC40’s ligands allow it to enter a <scene name='72/727085/Hgpr40_entry/2'>noncanonical binding pocket </scene> between TM3 and TM4 by moving through the lipid bilayer.
-
GPR40’s natural substrate are FFAs in which a free [https://en.wikipedia.org/wiki/Carboxylic_acid carboxyl group] is required to bind. However, GPR40 can be activated by a wide variety of fatty acids with chain lengths ranging from [https://en.wikipedia.org/wiki/Saturated_fat saturated fatty acids] with 8 carbons to 23 carbons. In addition, various [https://en.wikipedia.org/wiki/Monounsaturated_fat mono] (i.e. [https://en.wikipedia.org/wiki/Palmitoleic_acid palmitoleic] (C16:1) and [https://en.wikipedia.org/wiki/Oleic_acid oleic] (C18:1) acids) and [https://en.wikipedia.org/wiki/Polyunsaturated_fatty_acid poly-unsaturated fatty acids] (i.e.[https://en.wikipedia.org/wiki/Linoleic_acid linoleic] (C18:2) and [https://en.wikipedia.org/wiki/List_of_unsaturated_fatty_acids#Eicosatrienoic_acid eicosatrienoic] (C20:3) acids) can activate GPR40.<ref name="Morgan"/> The agonists potency varies according to the carbon-chain length however. The activity of GPR40 increases when the chain is increased from C6 to C15 but then decreased when the chain was extended beyond C15. One explanation for this is that as [https://en.wikipedia.org/wiki/Alkyl alkyl] chain increased, so did the [https://en.wikipedia.org/wiki/Hydrophobe hydrophobic] interactions with the protein within the binding pocket. However, for FFAs with carbon chains longer than C15, the molecular size is too large for the binding pocket. This causes the alkyl chain to extend beyond the binding pocket and destabilize the binding.<ref name="RenXM" />
+
FFAs bind to hGPR40 by coordinating its free carboxyl group to 3 amino acids, <scene name='72/727085/Ffa_binding/1'>Arg183, Tyr2240, and Arg258</scene>, which are located close to the <scene name='72/727085/Hgpr40_transmane_active/1'>extracellular domain</scene> of hGPR40 on TM5, 6 and 7. Because of the close proximity of these residues to the extracellular domain and the dominantly hydrophobic nature of FFA’s, it is likely that ligand binding occurs close to the plane of the membrane.
-
FFAs bind to hGPR40 by coordinating its free carboxyl group to three amino acids, <scene name='72/727085/Ffa_binding/1'>Arg183, Tyr2240, and Arg258</scene>, which are located close to the <scene name='72/727085/Hgpr40_transmane_active/1'>extracellular domain</scene> of hGPR40 on TM5, 6 and 7. Because of the close proximity of these residues to the extracellular domain and the dominantly hydrophobic nature of FFA’s, it is likely that ligand binding occurs close to the plane of the membrane.<ref name="Morgan"/>
+
The <scene name='72/721541/Tak_binding_site/4'>binding site for the partial agonist TAK-875</scene> has been identified, but other binding sites were hypothesized. TAK-875 binds between transmembrane helices 3, 4, and 5 and underneath ECL2. By visual inspection, a 2nd possible binding site was proposed between transmembrane helices 3, 4, and 5 on the intracellular side of the transmembrane helices. The location of this binding site with respect to the membrane proposes that substrates would gain entry to the membrane by binding in this site. Also by visual inspection, a third possible binding site was proposed between transmembrane helices 1, 2, and 7 on the extracellular side of hGPR40, close to the TAK-875 binding site. These binding sites could potentially serve as regulation points for hGPR40. Many proteins that exhibit cooperativity are regulated by the binding of inhibitors.
-
[http://metislabs.com/radioligand-binding-assays Radioligand binding studies] identified multiple [https://en.wikipedia.org/wiki/Binding_site binding sites] in hGPR40.<ref name="Srivastava"/> [https://en.wikipedia.org/wiki/Agonist Full agonists] and [https://en.wikipedia.org/wiki/Partial_agonist partial agonists] were shown to bind in separate sites with positive [http://www.britannica.com/science/cooperativity cooperativity].<ref name="Lin">PMID:22859723</ref> The <scene name='72/721541/Tak_binding_site/4'>binding site for the partial agonist TAK-875</scene> has been identified, but other binding sites were hypothesized. TAK-875 binds between transmembrane helices 3, 4, and 5 and underneath ECL2. By visual inspection, a second possible binding site was proposed between transmembrane helices 3, 4, and 5 on the intracellular side of the transmembrane helices. The location of this binding site with respect to the membrane proposes that substrates would gain entry to the membrane by binding in this site. Also by visual inspection, a third possible binding site was proposed between transmembrane helices 1, 2, and 7 on the extracellular side of hGPR40, close to the TAK-875 binding site.<ref name="Srivastava"/> These binding sites could potentially serve as regulation points for hGPR40. Many proteins that exhibit cooperativity are regulated by the binding of inhibitors.
+
hGPR40 has a distinct binding pocket that is established by <scene name='72/721541/All_binding_residues/3'>8 key residues</scene>: <scene name='72/721541/Tyr91/1'>Tyr91</scene>, <scene name='72/721541/Glu172/2'>Glu172</scene>, <scene name='72/721541/Arg183/2'>Arg183</scene>, <scene name='72/721541/Ser187/2'>Ser187</scene>, <scene name='72/721541/Tyr240/1'>Tyr240</scene>, <scene name='72/721541/Asn241/1'>Asn241</scene>, <scene name='72/721541/Asn244/1'>Asn244</scene>, and <scene name='72/721541/Arg258/1'>Arg258</scene> (all individual residues shown in chartreuse). The importance of these residues for agonist binding was determined by alanine site-directed-mutagenesis mutagenesis studies. When the substrate (an agonist) enters the binding pocket, 4 of the 8 <scene name='72/721541/Hydrogen_binding_1/8'>key binding residues</scene> interact directly with the carboxylate moiety of the agonist by hydrogen bonding to it. These residues include 2 key arginines in the binding pocket, Arg183 and Arg258,<ref name="Sum">PMID: 17699519</ref><ref name="Sum, C.">PMID:19068482</ref> and 2 key tyrosine residues, Tyr91 and Tyr240. Tyr240 is especially important for binding, as mutation of Tyr240 caused an eight fold reduction in the binding affinity of TAK-875 and had a significant effect on the binding affinity (K<sub>D</sub>) of the protein.
-
 
+
-
hGPR40 has a distinct binding pocket that is established by <scene name='72/721541/All_binding_residues/3'>eight key residues</scene>: <scene name='72/721541/Tyr91/1'>Tyr91</scene>, <scene name='72/721541/Glu172/2'>Glu172</scene>, <scene name='72/721541/Arg183/2'>Arg183</scene>, <scene name='72/721541/Ser187/2'>Ser187</scene>, <scene name='72/721541/Tyr240/1'>Tyr240</scene>, <scene name='72/721541/Asn241/1'>Asn241</scene>, <scene name='72/721541/Asn244/1'>Asn244</scene>, and <scene name='72/721541/Arg258/1'>Arg258</scene> (all individual residues shown in <FONT COLOR="#00FF00">'''chartreuse'''</FONT>). The importance of these residues for agonist binding was determined by alanine [https://www.neb.com/applications/cloning-and-synthetic-biology/site-directed-mutagenesis mutagenesis] studies. Each of these residues have either a [http://www.proteinstructures.com/Structure/Structure/amino-acids.html charged or polar R-group] that creates a charge network that keeps these residues in a stable, unbound state until exposed to a substrate. When the substrate (an agonist) enters the binding pocket, four of the eight <scene name='72/721541/Hydrogen_binding_1/8'>key binding residues</scene> interact directly with the carboxylate moiety of the agonist by hydrogen bonding to it. These residues include two key arginines in the binding pocket, Arg183 and Arg258,<ref name="Sum">PMID: 17699519</ref><ref name="Sum, C.">PMID:19068482</ref> and two key tyrosine residues, Tyr91 and Tyr240. Tyr240 is especially important for binding, as mutation of Tyr240 caused an eight fold reduction in the binding affinity of TAK-875 and had a significant effect on the binding affinity ([https://en.wikipedia.org/wiki/Dissociation_constant K<sub>D</sub>]) of the protein.<ref name="Srivastava"/>
+
hGPR40 contains a highly conserved hairpin extracellular loop. This extracellular loop (<scene name='72/721541/Ecl2/4'>ECL2</scene>) is the longest and most divergent of the extracellular loops found in proteins (<scene name='72/721541/Ecl2_top/2'>top view of ECL2</scene>). The loop is accompanied by a [https://en.wikibooks.org/wiki/Structural_Biochemistry/Chemical_Bonding/_Disulfide_bonds disulfide bond] (<scene name='72/721541/Cysteine_bridge/3'>Cys79 and Cys170</scene>) that forms between transmembrane helix 4 and the C-terminus of the ECL2 loop. In hGPR40, ECL2 has two sections: a <FONT COLOR="#00FFFF">'''beta sheet'''</FONT> and an <FONT COLOR="#FF00FF">'''auxiliary loop'''</FONT>. The [https://en.wikipedia.org/wiki/Beta_sheet beta sheet] spans helices 4 and 5 and is shorter in hGPR40 than in other GPCRs. The ECL2 of hGPR40 also differs from that of other proteins because it contains an auxiliary loop of 13 extra residues. The entire extracellular loop has low mobility and flexibility, which allows it to act as a cap for the binding pocket. The only exception to the low flexibility is the tip of the auxiliary loop, which corresponds to residues Asp152-Asn155. This area of greater mobility allows for substrates to enter the binding site.<ref name="Srivastava"/>
hGPR40 contains a highly conserved hairpin extracellular loop. This extracellular loop (<scene name='72/721541/Ecl2/4'>ECL2</scene>) is the longest and most divergent of the extracellular loops found in proteins (<scene name='72/721541/Ecl2_top/2'>top view of ECL2</scene>). The loop is accompanied by a [https://en.wikibooks.org/wiki/Structural_Biochemistry/Chemical_Bonding/_Disulfide_bonds disulfide bond] (<scene name='72/721541/Cysteine_bridge/3'>Cys79 and Cys170</scene>) that forms between transmembrane helix 4 and the C-terminus of the ECL2 loop. In hGPR40, ECL2 has two sections: a <FONT COLOR="#00FFFF">'''beta sheet'''</FONT> and an <FONT COLOR="#FF00FF">'''auxiliary loop'''</FONT>. The [https://en.wikipedia.org/wiki/Beta_sheet beta sheet] spans helices 4 and 5 and is shorter in hGPR40 than in other GPCRs. The ECL2 of hGPR40 also differs from that of other proteins because it contains an auxiliary loop of 13 extra residues. The entire extracellular loop has low mobility and flexibility, which allows it to act as a cap for the binding pocket. The only exception to the low flexibility is the tip of the auxiliary loop, which corresponds to residues Asp152-Asn155. This area of greater mobility allows for substrates to enter the binding site.<ref name="Srivastava"/>

Revision as of 14:47, 21 April 2021

Nicotinic Acetylcholine Receptor, PDB code 2bg9

Drag the structure with the mouse to rotate

References

  1. De Rienzo F, Moura Barbosa AJ, Perez MA, Fernandes PA, Ramos MJ, Menziani MC. The extracellular subunit interface of the 5-HT(3) receptors: a computational alanine scanning mutagenesis study. J Biomol Struct Dyn. 2012 Jul;30(3):280-98. Epub 2012 Jun 12. PMID:22694192 doi:10.1080/07391102.2012.680029
  2. Granier S, Manglik A, Kruse AC, Kobilka TS, Thian FS, Weis WI, Kobilka BK. Structure of the delta-opioid receptor bound to naltrindole. Nature. 2012 May 16;485(7398):400-4. doi: 10.1038/nature11111. PMID:22596164 doi:10.1038/nature11111
  3. Granier S, Manglik A, Kruse AC, Kobilka TS, Thian FS, Weis WI, Kobilka BK. Structure of the delta-opioid receptor bound to naltrindole. Nature. 2012 May 16;485(7398):400-4. doi: 10.1038/nature11111. PMID:22596164 doi:10.1038/nature11111
  4. Krumm BE, White JF, Shah P, Grisshammer R. Structural prerequisites for G-protein activation by the neurotensin receptor. Nat Commun. 2015 Jul 24;6:7895. doi: 10.1038/ncomms8895. PMID:26205105 doi:http://dx.doi.org/10.1038/ncomms8895
  5. Yin J, Mobarec JC, Kolb P, Rosenbaum DM. Crystal structure of the human OX orexin receptor bound to the insomnia drug suvorexant. Nature. 2014 Dec 22. doi: 10.1038/nature14035. PMID:25533960 doi:http://dx.doi.org/10.1038/nature14035
  6. Sum CS, Tikhonova IG, Neumann S, Engel S, Raaka BM, Costanzi S, Gershengorn MC. Identification of residues important for agonist recognition and activation in GPR40. J Biol Chem. 2007 Oct 5;282(40):29248-55. Epub 2007 Aug 15. PMID:17699519 doi:http://dx.doi.org/10.1074/jbc.M705077200
  7. Sum CS, Tikhonova IG, Costanzi S, Gershengorn MC. Two arginine-glutamate ionic locks near the extracellular surface of FFAR1 gate receptor activation. J Biol Chem. 2009 Feb 6;284(6):3529-36. doi: 10.1074/jbc.M806987200. Epub 2008, Dec 8. PMID:19068482 doi:http://dx.doi.org/10.1074/jbc.M806987200
  8. Cite error: Invalid <ref> tag; no text was provided for refs named Srivastava
  9. Hanson MA, Roth CB, Jo E, Griffith MT, Scott FL, Reinhart G, Desale H, Clemons B, Cahalan SM, Schuerer SC, Sanna MG, Han GW, Kuhn P, Rosen H, Stevens RC. Crystal structure of a lipid G protein-coupled receptor. Science. 2012 Feb 17;335(6070):851-5. PMID:22344443 doi:10.1126/science.1215904
  10. Segaliny AI, Tellez-Gabriel M, Heymann MF, Heymann D. Receptor tyrosine kinases: Characterisation, mechanism of action and therapeutic interests for bone cancers. J Bone Oncol. 2015 Jan 23;4(1):1-12. doi: 10.1016/j.jbo.2015.01.001. eCollection , 2015 Mar. PMID:26579483 doi:http://dx.doi.org/10.1016/j.jbo.2015.01.001
  11. Li MJ, Greenblatt HM, Dym O, Albeck S, Pais A, Gunanathan C, Milstein D, Degani H, Sussman JL. Structure of estradiol metal chelate and estrogen receptor complex: The basis for designing a new class of selective estrogen receptor modulators. J Med Chem. 2011 Apr 7. PMID:21473635 doi:10.1021/jm200192y

Proteopedia Page Contributors and Editors (what is this?)

Alexander Berchansky

Personal tools