Receptor

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 121: Line 121:
FFAs bind to hGPR40 by coordinating its free carboxyl group to 3 amino acids, <scene name='72/727085/Ffa_binding/1'>Arg183, Tyr2240, and Arg258</scene>, which are located close to the <scene name='72/727085/Hgpr40_transmane_active/1'>extracellular domain</scene> of hGPR40 on TM5, 6 and 7. Because of the close proximity of these residues to the extracellular domain and the dominantly hydrophobic nature of FFA’s, it is likely that ligand binding occurs close to the plane of the membrane.
FFAs bind to hGPR40 by coordinating its free carboxyl group to 3 amino acids, <scene name='72/727085/Ffa_binding/1'>Arg183, Tyr2240, and Arg258</scene>, which are located close to the <scene name='72/727085/Hgpr40_transmane_active/1'>extracellular domain</scene> of hGPR40 on TM5, 6 and 7. Because of the close proximity of these residues to the extracellular domain and the dominantly hydrophobic nature of FFA’s, it is likely that ligand binding occurs close to the plane of the membrane.
-
The <scene name='72/721541/Tak_binding_site/4'>binding site for the partial agonist TAK-875</scene> has been identified, but other binding sites were hypothesized. TAK-875 binds between transmembrane helices 3, 4, and 5 and underneath ECL2. By visual inspection, a 2nd possible binding site was proposed between transmembrane helices 3, 4, and 5 on the intracellular side of the transmembrane helices. The location of this binding site with respect to the membrane proposes that substrates would gain entry to the membrane by binding in this site. Also by visual inspection, a third possible binding site was proposed between transmembrane helices 1, 2, and 7 on the extracellular side of hGPR40, close to the TAK-875 binding site. These binding sites could potentially serve as regulation points for hGPR40. Many proteins that exhibit cooperativity are regulated by the binding of inhibitors.
+
The <scene name='72/721541/Tak_binding_site/4'>binding site for the partial agonist TAK-875</scene> has been identified, but other binding sites were hypothesized. TAK-875 binds between transmembrane helices 3, 4, and 5 and underneath ECL2. hGPR40 has a distinct binding pocket that is established by <scene name='72/721541/All_binding_residues/3'>8 key residues</scene>: <scene name='72/721541/Tyr91/1'>Tyr91</scene>, <scene name='72/721541/Glu172/2'>Glu172</scene>, <scene name='72/721541/Arg183/2'>Arg183</scene>, <scene name='72/721541/Ser187/2'>Ser187</scene>, <scene name='72/721541/Tyr240/1'>Tyr240</scene>, <scene name='72/721541/Asn241/1'>Asn241</scene>, <scene name='72/721541/Asn244/1'>Asn244</scene>, and <scene name='72/721541/Arg258/1'>Arg258</scene> (all individual residues shown in chartreuse). The importance of these residues for agonist binding was determined by alanine site-directed-mutagenesis mutagenesis studies. When the substrate (an agonist) enters the binding pocket, 4 of the 8 <scene name='72/721541/Hydrogen_binding_1/8'>key binding residues</scene> interact directly with the carboxylate moiety of the agonist by hydrogen bonding to it. These residues include 2 key arginines in the binding pocket, Arg183 and Arg258, and 2 key tyrosine residues, Tyr91 and Tyr240. Tyr240 is especially important for binding, as mutation of Tyr240 caused an eight fold reduction in the binding affinity of TAK-875 and had a significant effect on the binding affinity (K<sub>D</sub>) of the protein.
-
hGPR40 has a distinct binding pocket that is established by <scene name='72/721541/All_binding_residues/3'>8 key residues</scene>: <scene name='72/721541/Tyr91/1'>Tyr91</scene>, <scene name='72/721541/Glu172/2'>Glu172</scene>, <scene name='72/721541/Arg183/2'>Arg183</scene>, <scene name='72/721541/Ser187/2'>Ser187</scene>, <scene name='72/721541/Tyr240/1'>Tyr240</scene>, <scene name='72/721541/Asn241/1'>Asn241</scene>, <scene name='72/721541/Asn244/1'>Asn244</scene>, and <scene name='72/721541/Arg258/1'>Arg258</scene> (all individual residues shown in chartreuse). The importance of these residues for agonist binding was determined by alanine site-directed-mutagenesis mutagenesis studies. When the substrate (an agonist) enters the binding pocket, 4 of the 8 <scene name='72/721541/Hydrogen_binding_1/8'>key binding residues</scene> interact directly with the carboxylate moiety of the agonist by hydrogen bonding to it. These residues include 2 key arginines in the binding pocket, Arg183 and Arg258,<ref name="Sum">PMID: 17699519</ref><ref name="Sum, C.">PMID:19068482</ref> and 2 key tyrosine residues, Tyr91 and Tyr240. Tyr240 is especially important for binding, as mutation of Tyr240 caused an eight fold reduction in the binding affinity of TAK-875 and had a significant effect on the binding affinity (K<sub>D</sub>) of the protein.
+
hGPR40 contains a highly conserved hairpin extracellular loop (<scene name='72/721541/Ecl2/4'>ECL2</scene>) is the longest and most divergent of the extracellular loops found in proteins (<scene name='72/721541/Ecl2_top/2'>top view of ECL2</scene>). The loop is accompanied by a disulfide bond (<scene name='72/721541/Cysteine_bridge/3'>Cys79 and Cys170</scene>) that forms between transmembrane helix 4 and the C-terminus of the ECL2 loop. In hGPR40, ECL2 has two sections: a beta sheet and an auxiliary loop. The β-sheet spans helices 4 and 5 and is shorter in hGPR40 than in other GPCRs. The ECL2 of hGPR40 also differs from that of other proteins because it contains an auxiliary loop of 13 extra residues. The entire extracellular loop has low mobility and flexibility, which allows it to act as a cap for the binding pocket. The only exception to the low flexibility is the tip of the auxiliary loop, which corresponds to residues Asp152-Asn155. This area of greater mobility allows for substrates to enter the binding site.
-
 
+
-
hGPR40 contains a highly conserved hairpin extracellular loop (<scene name='72/721541/Ecl2/4'>ECL2</scene>) is the longest and most divergent of the extracellular loops found in proteins (<scene name='72/721541/Ecl2_top/2'>top view of ECL2</scene>). The loop is accompanied by a disulfide bond (<scene name='72/721541/Cysteine_bridge/3'>Cys79 and Cys170</scene>) that forms between transmembrane helix 4 and the C-terminus of the ECL2 loop. In hGPR40, ECL2 has two sections: a <FONT COLOR="#00FFFF">'''beta sheet'''</FONT> and an <FONT COLOR="#FF00FF">'''auxiliary loop'''</FONT>. The beta sheet spans helices 4 and 5 and is shorter in hGPR40 than in other GPCRs. The ECL2 of hGPR40 also differs from that of other proteins because it contains an auxiliary loop of 13 extra residues. The entire extracellular loop has low mobility and flexibility, which allows it to act as a cap for the binding pocket. The only exception to the low flexibility is the tip of the auxiliary loop, which corresponds to residues Asp152-Asn155. This area of greater mobility allows for substrates to enter the binding site.
+
<scene name='72/727085/Hgpr40_begin/3'>Tak-875</scene> is a partial agonist of GPR40 and tested for the treatment of type 2 diabetes. The binding of TAK-875 to hGPR40 occurs by the ligand entering the binding site through the membrane bilayer. This membrane insertion is performed via a method similar to ligand binding to sphingosine 1-phosphate receptor 1, retinal loading of GPCR opsin, and the entry of anandamide in cannabinoid receptors, in which the <scene name='72/727085/Ecl2/4'>extracellular loops</scene> block the binding from the extracellular matrix <ref>PMID:22344443</ref>.
<scene name='72/727085/Hgpr40_begin/3'>Tak-875</scene> is a partial agonist of GPR40 and tested for the treatment of type 2 diabetes. The binding of TAK-875 to hGPR40 occurs by the ligand entering the binding site through the membrane bilayer. This membrane insertion is performed via a method similar to ligand binding to sphingosine 1-phosphate receptor 1, retinal loading of GPCR opsin, and the entry of anandamide in cannabinoid receptors, in which the <scene name='72/727085/Ecl2/4'>extracellular loops</scene> block the binding from the extracellular matrix <ref>PMID:22344443</ref>.
Line 132: Line 130:
*[[Lysophosphatidic acid receptor]]
*[[Lysophosphatidic acid receptor]]
-
LPA<sub>1</sub> lies in the membrane as shown by the <scene name='72/721545/Membrane/6'>fatty acid</scene> bound in the crystallization of LPA<sub>1</sub> in orange. Most <scene name='72/721545/Polarity/4'>polar amino acids</scene> (red) reside on the intracellular and extracellular areas of the receptor, while most residues positioned on the trans membrane helices inside the membrane are hydrophobic (blue). A cytochrome b (b<sub>562</sub>RIL) protein was inserted into the 3rd intracellular loop to facilitate crystallization. The intracellular region of this membrane protein is coupled to a [https://www.ebi.ac.uk/interpro/potm/2004_10/Page2.htm heterotrimeric G protein].
+
LPA<sub>1</sub> lies in the membrane as shown by the <scene name='72/721545/Membrane/6'>fatty acid</scene> bound in the crystallization of LPA<sub>1</sub> in orange. Most <scene name='72/721545/Polarity/4'>polar amino acids</scene> (red) reside on the intracellular and extracellular areas of the receptor, while most residues positioned on the trans membrane helices inside the membrane are hydrophobic (blue). A cytochrome b (b<sub>562</sub>RIL) protein was inserted into the 3rd intracellular loop to facilitate crystallization. The intracellular region of this membrane protein is coupled to a heterotrimeric G protein.
-
Three native <scene name='72/721545/Disulfides/5'>disulfide bonds</scene> in the extracellular region of this receptor provide fold stability. The 1st disulfide bond constrains the N terminal helix to extracellular loop (ECL) 2. The 2nd disulfide bond shapes ECL2, and the 3rd binds ECL3 to one of the transmembrane alpha helices. These disulfide bonds provide intramolecular stabilization along the extracellular region of the LPA<sub>1</sub> receptor, where the substrate enters into the binding pocket. The <scene name='72/721545/N-terminus/3'>N-terminus</scene> is a 6 turn alpha helix and functions like a cap on the extracellular side of the protein, packing tightly against ECL1 and ECL2. The N-terminus helix also provides <scene name='72/721545/34_39_40/4'>polar amino acids</scene> that interact with the ligand when bound. The extracellular region of this receptor plays a role in substrate specificity.
+
Three native <scene name='72/721545/Disulfides/5'>disulfide bonds</scene> in the extracellular region of this receptor provide fold stability. The 1st disulfide bond constrains the N terminal helix to extracellular loop (ECL) 2. The 2nd disulfide bond shapes ECL2, and the 3rd binds ECL3 to one of the transmembrane alpha helices. These disulfide bonds provide intramolecular stabilization along the extracellular region of the LPA<sub>1</sub> receptor, where the substrate enters into the binding pocket. The <scene name='72/721545/N-terminus/3'>N-terminus</scene> is a 6 turn α-helix and functions like a cap on the extracellular side of the protein, packing tightly against ECL1 and ECL2. The N-terminus helix also provides <scene name='72/721545/34_39_40/4'>polar amino acids</scene> that interact with the ligand when bound. The extracellular region of this receptor plays a role in substrate specificity.
*[[User:Harish Srinivas/Sandbox 1|Sphingosine 1-phosphate Receptor]]
*[[User:Harish Srinivas/Sandbox 1|Sphingosine 1-phosphate Receptor]]

Revision as of 15:06, 21 April 2021

Nicotinic Acetylcholine Receptor, PDB code 2bg9

Drag the structure with the mouse to rotate

References

  1. De Rienzo F, Moura Barbosa AJ, Perez MA, Fernandes PA, Ramos MJ, Menziani MC. The extracellular subunit interface of the 5-HT(3) receptors: a computational alanine scanning mutagenesis study. J Biomol Struct Dyn. 2012 Jul;30(3):280-98. Epub 2012 Jun 12. PMID:22694192 doi:10.1080/07391102.2012.680029
  2. Granier S, Manglik A, Kruse AC, Kobilka TS, Thian FS, Weis WI, Kobilka BK. Structure of the delta-opioid receptor bound to naltrindole. Nature. 2012 May 16;485(7398):400-4. doi: 10.1038/nature11111. PMID:22596164 doi:10.1038/nature11111
  3. Granier S, Manglik A, Kruse AC, Kobilka TS, Thian FS, Weis WI, Kobilka BK. Structure of the delta-opioid receptor bound to naltrindole. Nature. 2012 May 16;485(7398):400-4. doi: 10.1038/nature11111. PMID:22596164 doi:10.1038/nature11111
  4. Krumm BE, White JF, Shah P, Grisshammer R. Structural prerequisites for G-protein activation by the neurotensin receptor. Nat Commun. 2015 Jul 24;6:7895. doi: 10.1038/ncomms8895. PMID:26205105 doi:http://dx.doi.org/10.1038/ncomms8895
  5. Yin J, Mobarec JC, Kolb P, Rosenbaum DM. Crystal structure of the human OX orexin receptor bound to the insomnia drug suvorexant. Nature. 2014 Dec 22. doi: 10.1038/nature14035. PMID:25533960 doi:http://dx.doi.org/10.1038/nature14035
  6. Hanson MA, Roth CB, Jo E, Griffith MT, Scott FL, Reinhart G, Desale H, Clemons B, Cahalan SM, Schuerer SC, Sanna MG, Han GW, Kuhn P, Rosen H, Stevens RC. Crystal structure of a lipid G protein-coupled receptor. Science. 2012 Feb 17;335(6070):851-5. PMID:22344443 doi:10.1126/science.1215904
  7. Segaliny AI, Tellez-Gabriel M, Heymann MF, Heymann D. Receptor tyrosine kinases: Characterisation, mechanism of action and therapeutic interests for bone cancers. J Bone Oncol. 2015 Jan 23;4(1):1-12. doi: 10.1016/j.jbo.2015.01.001. eCollection , 2015 Mar. PMID:26579483 doi:http://dx.doi.org/10.1016/j.jbo.2015.01.001
  8. Li MJ, Greenblatt HM, Dym O, Albeck S, Pais A, Gunanathan C, Milstein D, Degani H, Sussman JL. Structure of estradiol metal chelate and estrogen receptor complex: The basis for designing a new class of selective estrogen receptor modulators. J Med Chem. 2011 Apr 7. PMID:21473635 doi:10.1021/jm200192y

Proteopedia Page Contributors and Editors (what is this?)

Alexander Berchansky

Personal tools