Receptor

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 25: Line 25:
*[[Molecular Playground/Glutamate Receptor|AMPA glutamate receptor]] by [http://www.umass.edu/cbi/ University of Massachusetts Amherst Chemistry-Biology Interface Program] at UMass Amherst and on display at the [http://www.molecularplayground.org/ Molecular Playground].
*[[Molecular Playground/Glutamate Receptor|AMPA glutamate receptor]] by [http://www.umass.edu/cbi/ University of Massachusetts Amherst Chemistry-Biology Interface Program] at UMass Amherst and on display at the [http://www.molecularplayground.org/ Molecular Playground].
-
Full view of the glutamate receptor shows the overall structure (amino-terminal, ligand-binding and transmembrane domains) in both <scene name='User:Mariel_Feliciano/sandbox_1/Full_view_black_background/6'>ribbon</scene> (MF) and <scene name='User:Mariel_Feliciano/sandbox_1/Full_view_spacefill/2'>spacefilling</scene> models.
+
Full view of the glutamate receptor shows the overall structure (N-terminal, ligand-binding and transmembrane domains) in both <scene name='User:Mariel_Feliciano/sandbox_1/Full_view_black_background/6'>ribbon</scene> and <scene name='User:Mariel_Feliciano/sandbox_1/Full_view_spacefill/2'>spacefilling</scene> models. <scene name='User:Mariel_Feliciano/sandbox_1/Amino_terminal_domains/2'>N-terminal domain</scene> is a part of the extracellular domain. This domain is implicated in receptor assembly, trafficking, and localization.
-
 
+
*<scene name='Molecular_Playground/Glutamate_Receptor/Transmembrane_domains/5'>Transmembrane Domain</scene>.
-
Zooming in at the top of the receptor (<scene name='User:Mariel_Feliciano/sandbox_1/Amino_terminal_domains/2'>Amino Terminal Domains</scene>) (RCB) one can view the amino terminal domain, which is a part of the extracellular domain. This domain is implicated in receptor assembly, trafficking, and localization.
+
*<scene name='Molecular_Playground/Glutamate_Receptor/Transmembrane_domains_pore2/1'>Transmembrane Domain</scene>. This domain widens in response to glutamate binding allowing for positive ions to pass through the post-synaptic membrane.
-
 
+
*<scene name='Molecular_Playground/Glutamate_Receptor/Glu_antagoinist/2'>Receptor antagonist 2K200225 binding site</scene>. Close up view of the ligand binding site (<scene name='Molecular_Playground/Glutamate_Receptor/Glu_agonist_/2'>Glutamate Binding</scene>) (AH) of the endogenous ligand glutamate.
-
Moving toward the bottom of the receptor (<scene name='Molecular_Playground/Glutamate_Receptor/Transmembrane_domains/5'>Transmembrane Domain</scene>) (SM) one can view the transmembrane domain. Here is the same domain separated from the rest of the protein.<scene name='Molecular_Playground/Glutamate_Receptor/Transmembrane_domains_pore2/1'>Transmembrane Domain</scene> (DM). This domain widens in response to glutamate binding allowing for positive ions to pass through the post-synaptic membrane.
+
-
 
+
-
This view (<scene name='Molecular_Playground/Glutamate_Receptor/Glu_antagoinist/2'>receptor antagonist</scene>) highlights the area where a receptor antagonist 2K200225, will bind. Close up view of the ligand binding site (<scene name='Molecular_Playground/Glutamate_Receptor/Glu_agonist_/2'>Glutamate Binding</scene>) (AH) of the endogenous ligand glutamate.
+
*[[Glutamate receptor (GluA2)]]
*[[Glutamate receptor (GluA2)]]

Revision as of 15:15, 22 April 2021

Nicotinic Acetylcholine Receptor, PDB code 2bg9

Drag the structure with the mouse to rotate

References

  1. De Rienzo F, Moura Barbosa AJ, Perez MA, Fernandes PA, Ramos MJ, Menziani MC. The extracellular subunit interface of the 5-HT(3) receptors: a computational alanine scanning mutagenesis study. J Biomol Struct Dyn. 2012 Jul;30(3):280-98. Epub 2012 Jun 12. PMID:22694192 doi:10.1080/07391102.2012.680029
  2. Granier S, Manglik A, Kruse AC, Kobilka TS, Thian FS, Weis WI, Kobilka BK. Structure of the delta-opioid receptor bound to naltrindole. Nature. 2012 May 16;485(7398):400-4. doi: 10.1038/nature11111. PMID:22596164 doi:10.1038/nature11111
  3. Granier S, Manglik A, Kruse AC, Kobilka TS, Thian FS, Weis WI, Kobilka BK. Structure of the delta-opioid receptor bound to naltrindole. Nature. 2012 May 16;485(7398):400-4. doi: 10.1038/nature11111. PMID:22596164 doi:10.1038/nature11111
  4. Krumm BE, White JF, Shah P, Grisshammer R. Structural prerequisites for G-protein activation by the neurotensin receptor. Nat Commun. 2015 Jul 24;6:7895. doi: 10.1038/ncomms8895. PMID:26205105 doi:http://dx.doi.org/10.1038/ncomms8895
  5. Yin J, Mobarec JC, Kolb P, Rosenbaum DM. Crystal structure of the human OX orexin receptor bound to the insomnia drug suvorexant. Nature. 2014 Dec 22. doi: 10.1038/nature14035. PMID:25533960 doi:http://dx.doi.org/10.1038/nature14035
  6. Hanson MA, Roth CB, Jo E, Griffith MT, Scott FL, Reinhart G, Desale H, Clemons B, Cahalan SM, Schuerer SC, Sanna MG, Han GW, Kuhn P, Rosen H, Stevens RC. Crystal structure of a lipid G protein-coupled receptor. Science. 2012 Feb 17;335(6070):851-5. PMID:22344443 doi:10.1126/science.1215904
  7. Segaliny AI, Tellez-Gabriel M, Heymann MF, Heymann D. Receptor tyrosine kinases: Characterisation, mechanism of action and therapeutic interests for bone cancers. J Bone Oncol. 2015 Jan 23;4(1):1-12. doi: 10.1016/j.jbo.2015.01.001. eCollection , 2015 Mar. PMID:26579483 doi:http://dx.doi.org/10.1016/j.jbo.2015.01.001
  8. Li MJ, Greenblatt HM, Dym O, Albeck S, Pais A, Gunanathan C, Milstein D, Degani H, Sussman JL. Structure of estradiol metal chelate and estrogen receptor complex: The basis for designing a new class of selective estrogen receptor modulators. J Med Chem. 2011 Apr 7. PMID:21473635 doi:10.1021/jm200192y

Proteopedia Page Contributors and Editors (what is this?)

Alexander Berchansky

Personal tools